期刊文献+

相场法模拟悬浮熔融硅液滴内部对流及自由界面变形现象 被引量:3

Phase Field Modeling of Internal Convection and Free Interface Deformation of Levitated Droplet of Molten Silicon
下载PDF
导出
摘要 为了模拟具有高密度比的两相流,提出采用牛顿迭代求解半隐式格式离散Cahn-Hilliard方程的方法,应用相场法模拟水的溃坝流和水下气泡的上升变形过程,发现水碰到右边壁面时,水面上卷,气泡在浮力作用下逐渐上升,从球形逐渐变为帽形,模拟结果与界面跟踪法模拟结果一致,验证了数值算法的正确性.在此基础上,数值模拟了悬浮熔融硅液滴的流动、变形过程,结果表明,具有初始变形的液滴在表面张力的作用下逐渐收缩,液滴内产生对流,然后,液滴逐渐变为长条状,液滴内分布着4个涡胞,沿纵向排列. In order to simulate the two-phase flow with high density ratio, the algorithm of Newton iteration was utilized to solve a discretized semi-implicit Cahn-Hilliard equation. The dam-break flow problem and the interface deformation of a rising air bubble in water were numerically simulated using the phase field method. The result exhibits that when the water flow reaches the right side wall, it flows upward along the solid wall. Driven by the buoyant force, the spherical bubble rises up, and deforms into a spherical-cap shape gradually. The results agree well with those obtained by the front tracking method, which indicates the validity of the numerical algorithm. By the phase field method, the internal convection and interface deformation of a levitated droplet of molten silicon is simulated with a given initial amplitude. The result shows that the droplet gradually shrinks and the internal convection occurs, driven by the surface tension force. After a while, the droplet extends again, and four vortexes locate in the droplet, aligning along the vertical direction.
出处 《西南交通大学学报》 EI CSCD 北大核心 2012年第4期692-697,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(50976128 51176210) 中国博士后基金特别资助项目(201003309) 教育部留学回国人员启动基金资助项目(教外司留[2009]1001-1)
关键词 相场模拟 硅熔体 液滴 半隐式格式 牛顿迭代 phase field modeling molten silicon droplet semi-implicit scheme Newton iteration
  • 相关文献

参考文献14

  • 1范建峰,袁章福,柯家骏.高温熔体表面张力测量方法的进展[J].化学通报,2004,67(11):802-807. 被引量:23
  • 2鄢振麟,解文军,魏炳波.声悬浮条件下扇谐振荡液滴的内部流动规律[J].中国科学:物理学、力学、天文学,2011,41(9):1096-1103. 被引量:3
  • 3ASAKUMA Y, HIRATA T, TSUKADA T, et al. Nonlinear oscillations of molten silicon drops in electromagnetic levitator[J]. J. Chemical Engineering of Japan, 2000, 33(6): 861-868.
  • 4BOJAREVICS V, PERICLEOUS K. Modelling electromagnetically levitated liquid droplet oscillation[ J ]. ISIJ International, 2003, 43 : 890-898.
  • 5WATANABE T. Nonlinear oscillations and rotations of a liquid droplet[J]. International J. Geology, 2010, 4(1) : 5-13.
  • 6JACQMIN D. Calculation of two-phase Navier-Stokes using phase-field modelling[ J]. J. Computational Physics, 1999, 155(1):96-127.
  • 7DING H, SPELT P D M, SHU C. Diffuse interface model for incompressible two-phase flows with large density ratios[ J]. J. Computational Physics, 2007, 226 (2) : 2078-2095.
  • 8TAKADA N, MATSUMOTO J, Matsumoto S, et al. Application of a phase-field method to the numerical analysis of motions of a two-phase fluid with high density ratio on a solid surface[J]. J. Computational Science and Technology, 2008, 2(2) : 318-329.
  • 9EYRE D J. An unconditionally stable one-step scheme for gradient systems [ R ]. Salt Lake: Department of Mathematics University of Utah, 1998.
  • 10BADALASSV E I, CENICEROS H D, BANERJEE S. Computation of multiphase systems with phase field models[J]. J. Computational Physics, 2003, 190: 371-397.

二级参考文献41

  • 1Klimakow M, Leiterer J, Kneipp J, et al. Combined synchrotron XRD/Raman measurements: In situ identification of polymorphic transitions during crystallization processes. Langmuir, 2010, 26(13): 11233-11237.
  • 2Santesson S, Johansson J, Taylor L S, et al. Airborne chemistry coupled to Raman spectroscopy. Anal Chem, 2003, 75(9): 2177-2180.
  • 3Oh J M, Ko S H, Kang K H. Shape oscillation of a drop in ac electrowetting. Langmuir, 2008, 24(15): 8379-8386.
  • 4Lai M F, Lee C P, Liao C N, et al. Oscillation spectrums and beat phenomenon of a water droplet driven by electrowetting. Appl Phys Lett, 2009, 94(15): 154102.
  • 5Courty S, Lagubeau G, Tixier T. Oscillating droplets by decomposition on the spherical harmonics basis. Phys Rev E, 2006, 73(4): 045301.
  • 6Shen C L, Xie W J, Yan Z L, et al. Internal flow of acoustically levitated drops undergoing sectorial oscillations. Phys Lett A, 2010, 374(39): 4045-4048.
  • 7Apfel R E, Tian Y, Jankovsky J, et al. Free oscillations and surfactant studies of superdeformed drops in microgravity. Phys Rev Lett, 1997, 78(10): 1912-1915.
  • 8Khismatullin D B, Nadim A. Shape oscillations of a viscoelastic drop. Phys Rev E, 2001, 63(6): 061508.
  • 9Basaran O A. Nonlinear oscillations of viscous liquid drops. J Fluid Mech, 1992, 241:169-198.
  • 10Ohsaka K, Rednikov A, Sadhal S S. Noncontact technique for determining the thermal diffusivity coefficient on acoustically levitated liquid drops. Rev Sci Instrum, 2003, 74(2): 1107-1112.

共引文献24

同被引文献27

  • 1刘晓燕,宛辉,韩国有,徐长军.特高含水不加热集油运行管理关键技术[J].油气田地面工程,2007(10):13-14. 被引量:3
  • 2刘晓燕,王德喜,韩国有,岳永会,郭敬红.特高含水采油期安全混输温度界限试验研究[J].石油学报,2005,26(3):102-105. 被引量:37
  • 3Liu Xiaoyan, Zhao Bo, Zhang Yan. The Testing Study of The T emperature Limit for Oil-gas-water Mixed Transportation During Oil Production with Special High Water-cut[C].Proceeding of the 3rd IASME/WSEAS Int. Conf. On heat transfer, theimal enginee ring and enironmertt, Corfu, Greecre, August 20-22, 2005: 49- 54.
  • 4DING H,SPELT P D M, SHU C. Diffuse interface model for into repressible two-phase flows with large density ratios[J]. J. Comput ational Physics, 2007(2): 2078-2095.
  • 5Lee Jaewon,Lee Woorim,Son Gihun.Numerical study of droplet breakupand merging in a microfluidic channel [j] Journal of Mechanical Scienceand Technology,2013,27(6): 1693-1699.
  • 6Tseng A A,Lee M H,Zhao B.Design and operation of a droplet depositionsystem for freeform fabrication of metal parts [j] Journal of EngineeringMaterials and Technology, 2001,123:74-84.
  • 7Dong Hong-ming.Drop-on-demand inkjet drop formation and deposition[D ] .Atlanta : Georgia Institute of Technology,2006.
  • 8YASUD H, OHNAKA I, NINOMIYA Y, et al. Levitation of metallic melt by using the simultaneous imposition of the alternating and the static magnetic fields[ J ]. Journal of Crystal Growth, 2004, 260 ( 3/ 4) : 475-485.
  • 9KOBATAKE H, FUKUYAMA H, MINATO I, et al. Noncontact modulated laser calorimetry of liquid silicon in a static magnetic field[J]. Journal of Applied Physics, 2008, 104(5): 054901-1-8.
  • 10KOBATAKE H, FUKUYAMA H, MINATO I, et al. Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field [J]. Applied Physics Letters, 2007, 90(9) : 094102-1-3.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部