期刊文献+

锂离子电池Sn基合金负极材料 被引量:6

Tin-Based Alloy Anode Materials for Lithium Ion Batteries
原文传递
导出
摘要 发展高安全性、高能量、低成本、长寿命锂离子电池是当前动力电池应用面临的巨大挑战。电池的性能主要取决于正负极电极材料的性能。Sn基合金负极具有高能量和安全特性,是一种很有产业化前景的锂离子电池负极材料。本文综述了Sn基合金电极作为锂离子电池负极的最新研究进展,对Sn基合金负极的不同制备方法进行了总结,重点介绍了锡基合金负极材料在电化学性能方面所存在的问题及其原因,包括锡基活性物质的损失、SEI膜和氧化膜的形成、纳米粒子的团聚和锂离子嵌入过程中死锂的产生等影响合金充放电性能的因素,最后展望了以提高Sn基合金负极电化学性能为目的的研究趋势。 Development of high safety, high energy, low cost and long service life Li ion rechargeable batteries is current a tremendous challenge for power battery application. The performance of the battery mainly depends on the nature of anode and cathode materials. Tin-based alloy is an industrially promising anode material for lithium ion batteries due to its high energy capacity and safety characteristics. In this review, the recent progress in Sn-based alloy anode materials for lithium ion batteries are reviewed. The different preparation methods of Sn- based alloy anodes are summarized. This review focuses on the problems in electrochemical properties of the Sn- based alloy anode and their causes, including the effect of loss of active material, SEI film and oxide film formation, aggregation of alloy particles and generation of dead lithium in the process of the intercalation of lithium ions on the charge and discharge performance of the alloy anode. The research trends in improving the electrochemical performance of the Sn-based alloy anode are prospected.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2012年第8期1466-1476,共11页 Progress in Chemistry
关键词 锂离子电池 锡基合金 负极材料 电化学性能 制备方法 lithium ion batteries tin-based alloy anode materials electrochemical performance preparation methods
  • 相关文献

参考文献113

  • 1Goodenough J B, Kim Y. Chem. Mater. , 2010, 22:587-603.
  • 2Hu Y S, Guo Y G, Dominko R, Gaberscek M, Jamnik J, Maier J. Adv. Mater. , 2007, 19:1963-1966.
  • 3褚道葆,李艳,宋奇,周莹.一种新碳源包覆的LiFePO4/C正极材料的合成及性能[J].物理化学学报,2011,27(8):1863-1867. 被引量:6
  • 4Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Science, 1997, 276 : 1395-1397.
  • 5Winter M, Besenhard J O. Electrochim. Acta, 1999, 45: 31- 50.
  • 6Zhang C Q, Tu J P, Huang X H,Yuan Y F, Wang S F, Mao F. J. Alloys Compd. , 2008, 457:81-85.
  • 7Cui W J, Wang F, Wang J, Liu H J, Wang C X, Xia Y Y. J. Power Sources, 2011, 196 : 3633-3639.
  • 8Ju S H, Jang H C, Kang Y C. J. Power Sources, 2009, 189: 163-168.
  • 9Yang R, Huang J, Zhao W, Lai W Z, Zhang X Z, Zheng J, Li X G. J. Power Sources, 2010, 195:6811-6816.
  • 10Wolfenstine J, Campos S, Foster D, Read J, Beh| W K. J. Power Sources, 2002, 109 : 230-233.

二级参考文献32

  • 1Huang, Y. H.; Park, K. S.; Goodenough, J. B. J. Electrochem. Soe. 2006, 153, A2282.
  • 2Ni, J. F.; Morishita, M.; Kawabe, Y.; Watada, M.; Takeichi, N.; Sakai, T. J. Power Sources 2010, 195, 2877.
  • 3Luo, S. H.; Tang, Z. L.; Lu, J. B.; Zhang, Z. T. Chinese Chemical Letters 2007, 18, 237.
  • 4Huang, Y. H.; Ren, H. B.; Yin, S. Y.; Wang, Y. H.; Peng, Z. H.; Zhou, Y. H. J. Power Sources 2010,/95, 610.
  • 5Li, D. M.; Song, H. L.; Zu, D. H. Cereal & Foodlndustry 2006, 13, 20.
  • 6Xiong, L. Z.; He, Z, Q. Acta Phys. -Chim. Sin. 2010, 26, 573.
  • 7Sun, J.; Xie, W.; Yuan, L.; Zhang, K.; Wang, Q. Mater Sci. Eng. B-Solid State Mater.Adv. Technol. 1999, 64, 157.
  • 8He, B. L.; Zhou, W. J.; Bao, S. J.; Liang, Y. Y.; Li, H. L. Electrochim. Acta 2007, 52, 3286.
  • 9Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (4), 1188.
  • 10Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.

共引文献5

同被引文献47

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部