期刊文献+

三自由度偏心索风致振动稳定性分析 被引量:11

STABLITY ANALYSIS FOR WIND-INDUCED VIBRATION OF 3-DEGREE-OF-FREEDOM ECCENTRIC CABLES
原文传递
导出
摘要 索结构在表面覆冰后在横截面上引起偏心,在风荷载作用下面内、面外两个横向振动与扭转振动会耦合在一起,动力学状态较为复杂。该文建立了悬索风致振动的三维耦合振动模型,将风荷载表示为攻角的非线性函数,通过Hamilton原理导出动力学方程。采用Galerkin法将控制方程离散化,根据Routh-Hurwitz判据得到索平衡构形在参数空间内的稳定域,确定了发生Hopf分岔的临界风速,并且用数值解验证了稳定性条件。在给定的Hopf分岔设计点附近,采用近似解析方法确定了稳定域的边界形状,节省了一定的计算工作量。 The dynamic behavior of an ice-covered cable is complicated because of the eccentricity over the cable's cross-section, which makes the in-plane and out-of-plane vibrations coupled with the torsion vibration. A three-dimensional coupling model of a suspension cable loaded by wind excitation is developed, with the wind force expressed as a nonlinear function of the angle of attack. The governing partial differential equation of motion is derived through the Hamilton's principle and discretized using the Galerkin approach. The stability region in the parametric space of the cable's equilibrium configuration is obtained using Routh-Hurwitz criterion. The critical wind speed of the Hopf bifurcation is determined and later verified numerically. The boundary shape of the stability region is obtained through an approximately analytical method in the vicinity of a given Hopf bifurcation point, by which a fair amount of computational cost is saved.
出处 《工程力学》 EI CSCD 北大核心 2012年第8期14-21,共8页 Engineering Mechanics
关键词 偏心索 风荷载 耦合振动 HOPF分岔 稳定域 eccentric cables wind excitation coupling motion Hopf bifurcation stability region
  • 相关文献

参考文献15

  • 1Den Hartog J P. Transmission line vibration due to sleet[J]. Transactions of the American Institute of ElectricalEngineers, 1932, 51(4): 1074-1086.
  • 2Blevins R D, Iwan W D. The galloping response of atwo-degree-of-freedom system [J]. ASME Journal ofApplied Mechanics, 1974, 41: 1113-1118.
  • 3Desai Y M, Popplewell N, Shah A H, Chan J K. Staticand dynamic behaviour of mechanics componentsassociated with electrical transmission lines-Ⅲ: Parta-theoretical perspective [J]. Shock and Vibration Digest,1989, 21: 3-8.
  • 4Rao G V, Iyengar R. Internal resonance and non-linearresponse of a cable under periodic excitation [J]. Journalof Sound and Vibration, 1991, 149: 25-41.
  • 5Nayfeh A H, Arafat H N. Multimode interactions insuspended cable [J]. Journal of Vibration and Control,2002, 8: 337-387.
  • 6Srinil N, Rega G, Chucheepsakul S. Three-dimensionalnon-linear coupling and dynamic tension in thelarge-amplitude free vibrations of arbitrarily saggedcable [J]. Journal of Sound and Vibration, 2004, 269:823-852.
  • 7Berlioz A, Lamarque C H. Nonlinear vibration of ainclined cable [J]. Journal of Vibration and Acoustics,2005, 127: 315-323.
  • 8Yu P, Popplewell N, Shah A H. A geometrical approachassessing instability trends for galloping [J]. Journal ofApplied Mechanics, 1991, 58: 784-791.
  • 9Yu P, Popplewell N, Shah A H. Inertially coupledgalloping of iced conductors [J]. Journal of Sound andVibration, 1992, 59: 140-145.
  • 10Desai Y M, Yu P, Popplewell N, Shah A H. Finite element modeling of transmission line galloping [J].Computers and Structures, 1995, 57(3): 407-420.

二级参考文献18

  • 1李万平,杨新祥,张立志.覆冰导线群的静气动力特性[J].空气动力学学报,1995,13(4):427-434. 被引量:59
  • 2Makkonen L. Modeling power line icing in freezing precipitation[J]. Atmospheric Research, 1998,46(12) : 131.
  • 3Poots G,Skelton P L I. Simulation of wet-snow accretion by axial growth on a transmission line conductor [J]. Applied Mathematical Modelling, 1995,19 (9) : 514.
  • 4Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion on overhead power lines[J]. IEEE Transactions on Power Delivery, 2005,20(2) : 1080.
  • 5Fu P, Farzaneh M, Bouchard G. Two-dimensional modelling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006,46 (2): 132.
  • 6McComber P, Paradis A. A cable galloping model for thin ice accretions[J]. Atmospheric Research, 1998,46 (12) : 13.
  • 7Chabart O, Lilien J L. Galloping of electrical lines in wind tunnel facilities[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74(6) : 967.
  • 8Macdonald J HG, Larose G L. A unified approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping[J]. Journal of Fluids and Structures, 2006,22 (2) : 229.
  • 9ESDU. Mean forces, pressures and flow field velocities for circular cylinderical structures: single cylinder with two- dimensional flow[R]. [S.l. ] : ESDU, 1981.
  • 10DenHartog J P. Mechanical vibrations [M]. 4th ed. New York: McGraw Hill, 1956.

共引文献48

同被引文献81

  • 1霍涛,晏致涛,李正良,颜志淼.考虑弹性边界曲梁模型的覆冰输电线舞动分析[J].工程力学,2015,32(1):137-144. 被引量:6
  • 2朱宽军,尤传永,赵渊如.输电线路舞动的研究与治理[J].电力建设,2004,25(12):18-21. 被引量:49
  • 3杨其俊,连家创,段振勇.冷带钢轧机垂直振动稳定性的数值分析[J].重型机械,1996(5):15-20. 被引量:3
  • 4RIEDEL C H, TAN C &Coupled forced response of an axially moving strip with internal resonance International. Non-Linear Mechanics, 2002,37:101-116.
  • 5CHOI J Y, HONG K S, HONG K T.Exponential stabilization of an axially moving tensioned strip by passive damping and bounay control. Vibration and Control, May 2004, vol. 10 no. 5: 661-682.
  • 6HATAMI S, AZHARI M. SAADATPOUR M M. Stability and vibration of elastically supported axially moving orthotropic plates Transaction.Science & Technology,2006 Vol. 30, No. B4.
  • 7MOTE C. D. Parametric excitation of an axially moving string Applied mechanics,Transactions of American Society of Mechanical Engineers 35:171-172.
  • 8BENEDET'FINI F. REGA G. and ALAGGIO R Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. Sound and Vibration ,1995 , 182 (5) :775-798.
  • 9SALMON R.Practical use of Hamilton's principle Fluid Mech, 1983, vol. 132: 431-444.
  • 10DONEAJATaylor.Galerkinmethodforconvectivetransport problems. John Wiley & Sons Ltd,1984.

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部