期刊文献+

组合线圈磁场下的液桥热表面张力流 被引量:3

THERMOCAPILLARY FLOW IN LIQUID BRIDGE UNDER MAGNETIC FIELD GENERATED BY COMBINED COIL CONFIGURATIONS
原文传递
导出
摘要 为了优化外加磁场对对流控制作用,该文主要研究了轴向载流线圈磁场,横向四载流线圈磁场及其组合磁场对液桥热表面张力对流的控制。研究结果表明:轴向载流线圈磁场可有效抑制熔体的径向流动,并改善熔体对流的轴对称性;而横向载流线圈磁场可有效地抑制熔体轴向的对流,但是会破坏熔体对流的轴对称性。合理布置的轴向载流和横向四载流线圈的组合磁场同时保留了轴向载流线圈磁场的轴对称影响和横向四载流的轴向抑制作用,可以达到更好的控制熔体对流的效果,有利于从浮区法晶体生长中获得高质量晶体。 In order to optimize convection control in a liquid bridge, the effects of the magnetic fields generated respectively by axial coils, transversal coils and their combination on thermocapillary flow are investigated. The results demonstrate that the magnetic field produced by axial coils can help suppress melt flow in the radial direction and improve the axisymmetry of a convection structure; and that the magnetic field produced by transversal coils, however, may break the axisymmetry of a convection structure while damping melt flow in the axial direction. Furthermore, the coupled favorable effect, weakened melt flow in the axial direction with an axisymmetrical convection structure, is obtained under the magnetic field produced by the combination of axial coils and transversal coils, thereby attaining a better effect on melt convection, and therefore high-quality crystal in floating zone crystal growth.
出处 《工程力学》 EI CSCD 北大核心 2012年第8期39-44,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10872222) 重庆市科委自然科学基金计划项目(2009BB4207) 高等学校博士学科点专项科研基金博导类资助课题项目(20110191110037) 创新研究群体科学基金项目(50921063)
关键词 热表面张力流 磁场 对流控制 浮区法 晶体生长 数值模拟 thermocapillary flow magnetic field convection control floating zone crystal growth numericalsimulation
  • 相关文献

参考文献19

  • 1Peng L, Meng H Y, Li Z. Axial magnetic field influence on thermocapillary convection in detached solidification under microgravity [J]. Microgravity Science and Technology, 2011, 23(1): 141-147..
  • 2Sadik D, Hamdi S. Liquid phase electroepitaxy of semiconductors under static magnetic field [J]. CrystEngComm, 2011, 13(19): 5619-5633.
  • 3Dold P, Cr?ll A, Benz K. Floating-zone growth of silicon in magnetic fields. I.Weak static axial fields [J]. Journal of Crystal Growth, 1998, 183(4): 545-553.
  • 4Cr?ll A, Szofran F, Dold P, et al. Floating-zone growth of silicon in magnetic fields. II. Strong static axial fields [J]. Journal of Crystal Growth, 1998, 183(4): 554-563.
  • 5Pablo V de, Rivas D. Effect of an axial magnetic field on the flow pattern in a cylindrical floating zone [J]. Advances in Space Research, 2005, 36(1): 48-56.
  • 6Kaiser T, Benz K. Floating-zone growth of silicon in magnetic fields. III. Numerical simulation [J]. Journal of Crystal Growth, 1998, 183(4): 564-572.
  • 7Li X H, Zeng Z, Yao L P, et al. Influence of transverse magnetic field on thermocapillary flow in liquid bridge [J]. Crystal Research and Technology, 2011, 46(3): 249-254.
  • 8Lan C W. Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace [J]. Journal of Crystal Growth, 1996, 169(2): 269-278.
  • 9Jr G Robertson, Oconnor D. Magnetic field effects on float-zone Si crystal growth. II-Strong transverse fields. III-Strong axial fields [J]. Journal of Crystal Growth, 1986, 76(1): 110-122.
  • 10Cr?ll A, Benz K. Static magnetic fields in semiconductor floating-zone growth [J]. Progress in Crystal Growth and Characterization of Materials, 1999, 38(1/2/3/4): 7-38.

同被引文献43

  • 1孟晓华,陈长乐,洪振宇,王建元.旋转磁场对Pb-Sn合金凝固组织的影响[J].中国科学(E辑),2006,36(3):243-250. 被引量:12
  • 2Feuerbacher B, Hamacher H, Naumann R J. Materials Sciences in Space A Contribution to the Scientific Basis of Space Processing[ M ]. Ber|in: Springer-Verlag Press, 1986:379-400.
  • 3Markov E V, Antropov V Y, Biryukov V M, et al. Space Materials for Microelectronics. In:Proceedings of the Join! Xth European and Vhh Russian Symposium on Physical Sciences in Microgravity, St. Petersburg, Russia(eds. by Avduyevsky V S, Polezhaev V 1) ,1997,2:11-20.
  • 4Chen Q S, Hu W R, Prasad V. Effect of Liquid Bridge Volume on the Instability in Small-Prandtl-Number Half Zones [ J ]. J. Cryst. Growth, 1999,203(1-2) :261-268.
  • 5Li K, Imaishi N, Jing C J, et al. Proper Orthogonal Decomposition of Oscillatory Marangoni Flow in Half-Zone Liquid Bridges of Low-Pr Fluids [ J ]. J. Cryst. Growth,2007,307 ( 1 ) : 155-170.
  • 6Crll A, Dold P, Benz K W. Segregation in Si Floating-Zone Crystals Grown under Microgravity and in a Magnetic Field[J]. J. Cryst. Growth. , 1994,137(1-2) :95-101.
  • 7Lan C W, Yeh B C. Three-Dimensional Simulation of Heat Flow, Segregation, and Zone Shape in Floating-Zone Silicon Growth under Axial and Transversal Magnetic Fields[J].J. Cryst. Growth,2004,262(1-4):59-71.
  • 8Robertson D G, Oonnor D. Magnetic Field Effects on Float-Zone Si Crystal Growth : II-Strong Transverse Fields[ J]. J. Cryst. Growth, 1986,76 (1) :100-110.
  • 9Croll A, Benz K. Static Magnetic Fields in Semiconductor Floating-Zone Growth [ J ]. Progress in Crystal Growth and Characterization of Materials, 1999,38(1-4) :7-38.
  • 10Series R W. Effect of a Shaped Magnetic Field on Czochralski Silicon Growth [ J ]. J. Cryst. Growth, 1989,97 (1) :92-98.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部