期刊文献+

密度梯度蜂窝材料动力学性能研究 被引量:24

RESEARCH ON THE DYNAMIC CRUSHING OF HONEYCOMBS WITH DENSITY GRADIENT
原文传递
导出
摘要 利用显式动力有限元方法数值研究了具有密度梯度六边形蜂窝材料的面内冲击动力学性能。根据功能梯度材料的概念,首先建立了具有密度梯度的蜂窝材料模型。基于此模型,具体讨论了密度梯度和冲击速度对六边形蜂窝材料变形模式和能量吸收性能的影响。研究结果表明,通过恰当地选择蜂窝材料的密度梯度,初始应力峰值明显减小,材料的能量吸收能力能够有效地得到控制。此结论为实现多胞材料动力学性能的多目标优化设计提供了新的设计思路。 The in-plane dynamic crushing of hexagonal honeycombs with density gradients is numerically studied by using explicit dynamic finite element method. Based on the concept of functionally graded materials, the density graded honeycomb mode is firstly established. And then the effects of density gradient and impact velocity on the deformation modes and the energy absorption capacities of hexagonal honeycombs are discussed in detail. Research results show that through the proper choice of the density gradient of honeycombs, the initial stress peak could be reduced significantly, and the energy absorption could be controlled effectively. The results will provide some useful guides in the multi-objective optimization design of impact dynamic properties of cellular materials.
作者 张新春 刘颖
出处 《工程力学》 EI CSCD 北大核心 2012年第8期372-377,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10972028) 中央高校基本科研业务费专项基金项目(11QG63)
关键词 蜂窝材料 密度梯度 变形模式 能量吸收 冲击 honeycomb density gradient deformation modes energy absorption impact
  • 相关文献

参考文献10

  • 1Lu G X, Yu T X. Energy absorption of structures and materials [M]. Cambridge: CRC Press, Woodhead Publishing Limited, 2003: 8-18..
  • 2Gibson L J, Ashby M F. Cellular solids: Structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 87-148.
  • 3H?nig A, Stronge W J. In-plane dynamic crushing of honeycombs. Part I: Crush band initiation and wave trapping [J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665-1696.
  • 4Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs-a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161-182.
  • 5Zou Z, Reid S R, Tan P J, et al. Dynamic crushing of honeycombs and features of shock fronts [J]. International Journal of Impact Engineering, 2009, 36(1): 165-176.
  • 6Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2D cellular structures: A finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650-664.
  • 7Ajdaria A, Canavanb P, Nayeb-Hashemia H, et al. Mechanical properties of functionally graded 2-D cellular structures: A finite element simulation [J]. Materials Science and Engineering A, 2009, 499(1/2): 434-439.
  • 8Gupta N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4/5): 979-982.
  • 9Liang C, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering A, 2009, 507(1/2): 215-225.
  • 10Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminum [J]. Acta Materialia, 2004, 52(14): 4229-4237.

同被引文献135

引证文献24

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部