期刊文献+

AP1000严重事故下的氢气源项及消氢措施分析 被引量:9

The Hydrogen Source and Hydrogen Mitigation Measurement during Severe Accidents for AP1000
原文传递
导出
摘要 采用一体化严重事故分析工具,建立包括主热传输系统、专设安全设施、安全壳系统的AP1000的事故分析模型。根据AP1000概率安全评价选取典型事故序列,同时叠加相关安全系统失效的严重事故进程进行模拟。结果表明,中破口始发严重事故压力容器内会产生624kg的氢气,安全壳隔间有氢气燃烧的风险。同时,建立氢气控制系统模型,选取热段中破口始发(MB-LOCA)的严重事故序列,分析氢气控制系统的消氢效果,结果表明,氢气控制系统可以有效地将氢气浓度控制在安全限值以内,采用64个点火器叠加2个非能动氢气复合器(PARs)可以有效降低点火次数。 AP1000 model,including Reactor Coolant System(RCS),Engineering Safety Features(ESFs),and containment,is built by using the integrated severe analysis code.According to AP1000 Probability Risk Analysis(PRA),several typical sequences are selected.The accident progressions are analyzed and hydrogen sources are investigated.It indicates that 624kg hydrogen will be generated in pressure vessel induced by MB-LOCA.The model of hydrogen control system,which consists of 64 glow-up igniters and two Passive Autocatalytic Recombiners(PARs),is built to analyze the effectiveness of removing hydrogen and the combustion modes are identified by the Shapiro triangular diagram.The results show that hydrogen concentration could be controlled within the safety limits by using 64 glow-up igniters and two PARs to protect the containment integrity from hydrogen deflagration or detonation.
出处 《科技导报》 CAS CSCD 北大核心 2012年第21期30-33,共4页 Science & Technology Review
基金 国家重点基础研究发展计划(973计划)项目(2009CB724301) 国际热核聚变实验堆(ITER)计划专项(2009GB106006)
关键词 AP1000 严重事故 氢气源项 氢气控制系统 AP1000; severe accident; hydrogen source; hydrogen control system
  • 相关文献

参考文献10

  • 1Breitung W, Royl P. Procedures and tools for deterministic analysis and control of hydrogen behavior in severe accidents [J]. Nuclear Engineering and Design, 2000, 202(2-3): 249-268.
  • 2国家核安全局.核动力厂设计安全规定[S].北京:国家核安全局,2004.
  • 3Blanchat T K, Stamps D W. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments [R]. NUREG/CR-65530, SANDA94-1676. Washington D C: US Nuclear Regulatory Commission, 1997.
  • 4Amould F, Baehellerie E. State of the art on hydrogen passive autocatalytic reeombiner [C]. Prc:eedings of the 9th International Conference on Nuclear Energy (ICONE), Nice, France, April 8-12, 2001.
  • 5Dorofeev S B, Bezmelnitsin A V, Sidorov V P, et oL Turbulent jet initiation of detonation in hydrogen-air mixtures [J]. Shock Waves, 1996, 6(2): 73-78.
  • 6Cheikhravat H, Yahyaour M, Barret A, et al. Influence of hydrogen distribution on flame propagation [C]. Third European Combustion Meeting, ECM, Crete, Greece, April 11-13, 2007.
  • 7Choi Y S, Lee U J, Lee J J, et ol. Improvement of HYCA3D code and experimental verification in rectangular geometry[J]. Nucl Eng Des, 2003, 226(3): 337-349.
  • 8Bachellerie E, Arnould F, Auglai:re M, et al. Genetic approach for designing and implementing a passive autoeatalytie reeombiner PAR- system in nuclear power plant containments[J]. Nucl Eng Des, 2003, 221 (1-3): 151-165.
  • 9Deng J, Cao X W. A study on implementing a passive autocatalytic recombiner PAR-system in the l trge-dry containment [J]. Nuc/ear Engineering and Design, 2008, 238('7): 2554-2560.
  • 10丁后林.三门AP1000核电站安全壳氢气控制的设计特点[J].核电工程与技术,2011(1):6-11. 被引量:1

二级参考文献2

  • 1HAF102:核动力厂设计安全规定.国家核安全局,2004.
  • 2顾军.AP1000核电厂系统及设备[M].北京:原子能出版社.2010.

同被引文献43

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部