期刊文献+

基于改进遗传算法的QoS感知Web服务组合 被引量:3

Web Service Composition Supporting QoS Based on Improved Genetic Algorithm
下载PDF
导出
摘要 传统遗传算法在种群初始化的时候,普遍采用均匀取种法或随机取种法,这些方法生成的种群的平均适应度比较低,难以保证算法的搜索效率。文中提出一种改进的遗传算法用于QoS敏感的Web服务组合,采用两种不同的算法进行服务选择,避免了随机生成初始种群给算法带来的负面影响。并且,该算法将路径模板化以减少服务组合的工作量,用染色体可变长的编码方式来解决组合服务的多路径选择问题。通过仿真实验,与传统的算法相比,所提出的算法在实现服务组合时收敛更快,最优解的适应度更高。 Even or random selecting is the common method used for generating initial population in genetic algorithm,however,the aver- age fitness of the population generated by this method is low, and it is hard to ensure the .searching efficiency of algorithm. In this study, propose a novel genetic algorithm (GA) for handling QoS-aware Web service composition, combining two initialized algorithms with GA at initialization stage to improve the algorithm effectiveness. Besides, build a path-template and variable length chromosomes service composition solution, for template paths will make the work easy and variable length chromosomes can support multi-path QoS-aware service composition. The superiority of the algorithm is analyzed theoretically and its effectiveness is demonstrated by experimental re- suits.
出处 《计算机技术与发展》 2012年第8期89-92,共4页 Computer Technology and Development
基金 国家科技支撑计划(2007BAH17B04)
关键词 WEB服务组合 服务质量 组合计划 模板 遗传算法 Web service composition QoS composition plan template genetic algorithm
  • 相关文献

参考文献7

二级参考文献70

共引文献201

同被引文献31

  • 1刘书雷,刘云翔,张帆,唐桂芬,景宁.一种服务聚合中QoS全局最优服务动态选择算法[J].软件学报,2007,18(3):646-656. 被引量:146
  • 2Karim R, Ding C, Chi C H. An enhanced PROMETHEE model for QoS-based web service selection [C]//Services Computing (SCC), 2011 IEEE International Conference on. IEEE, 2011: 536-543.
  • 3Gomes R, Ribeiro J. Use of web services in E-government information systems a Case sudy[C]//Information Management and Engineering, 2009. ICIME'09. International Conference on. IEEE, 2009: 475-480.
  • 4Danielson K. Distinguishing Cloud Computing from Utility Computing[J/OL]. http://www, ebizq, net/blogs/saasweek/2008/03/ distinguishing__cloud_computing, 2008.
  • 5Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1): 107- 113.
  • 6Zhang C, De Sterck H, Aboulnaga A, et al. Case study of scientific data processing on a cloud using hadoop [C]//High performance computing systems and applications. Springer Berlin Heidelberg, 2010: 400-415.
  • 7Maamar Z,Subramanian S,Thiran P,et al.An approach to engineer communities of Web services:concepts,architecture,operation,and deployment[J].International Journal of E-Business Research,2009,5(4):1-21.
  • 8Qi Yu,Bouguettay A.Computing service skyline from uncertain Qo WS[J].IEEE Transactions on Services Computing,2010,3(1):16-29.
  • 9Zheng Zibin,Lyu M R.An adaptive Qo S-aware fault tolerance strategy for web services[J].Empir Software Eng,2010,15:323-345.
  • 10Zheng Zibin,Michael R.Optimal fault tolerance strategy selection for Web services[J].International Journal of Web Services Research,2010,7(4):21-40.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部