期刊文献+

节点非线性耦合的复杂动态网络同步控制研究 被引量:1

Synchronization of Complex Dynamical Networks with Nonlinearly Coupled Nodes
下载PDF
导出
摘要 文中研究节点状态非线性耦合的复杂动态网络的局部同步和全局同步的问题。不同于现有的这类网络的利用节点状态变量设计控制器进行同步控制的方法,提出了一种设计同步控制器的新方法,该方法只需利用网络节点输出变量构造控制器,使其达到同步,克服了现有方法利用节点状态变量设计控制器存在的不足,使控制器实现起来更加简单。利用Lyapunov方法给出这类复杂网络的同步准则,以Lorenz混沌映射作为复杂网络的节点进行数值仿真,研究表明,这种方法能够使节点状态非线性耦合的复杂动态网络达到同步,通过系统仿真,证明了文中所提方法的有效性。 It investigates the local and global synchronization of nonlinearly coupled complex dynamical networks. Unlike the existing syn- chronization methods,propose a new approach to design the synchronization controller. This method can only use the nodes outputs of a complex network to construct synchronization controllers and it overcomes the shortcomings of the existing method which uses the nodes state variables to design the controller. The controller proposed is much more easier to achieve. Furthermore, synchronization criteria is a- chieved for a complex network on the basis of the Lyapunov stability theory. Using the Lorenz system as a node of the network, studies have shown that the network can be synchronized under the proposed controller and numerical simulations are given to demonstrate the ef- fectiveness of the proposed method.
出处 《计算机技术与发展》 2012年第8期107-110,共4页 Computer Technology and Development
基金 国家自然科学基金项目(60874091) 江苏省'六大人才高峰'高层次人才项目(SJ209006) 高等学校博士点基金项目(20103223110003) 江苏省自然科学基金项目(BK2010526)
关键词 复杂动态网络 非线性内部耦合 局部同步 全局同步 complex dynamical networks nonlinear inner-coupling local synchronization global synchronization
  • 相关文献

参考文献15

  • 1Strogatz S H, Stewart I. Coupled oscillators and biological synchronization [ J ]. Scientific American, 1993,269 ( 6 ) : 102 -109.
  • 2Gray C M. Synchronous oscillations in neuronal systems: mechanisms and functions [ J ]. Journal of Computer Neuro Science, 1994,1 ( 1-2 ) : 11-38.
  • 3Fang Y, Kincaid T G. Stability analysis of dynamical neural networks [ J ]. IEEE Transaction on Neural Networks, 1996,7 (4) :996-1006.
  • 4Nfda Z, Ravasz E, Vicsek T. Physics of the rhythmic ap- plause [ J ]. Physical Review E,2000,61 (6) :6987-6992.
  • 5Wang X F, Chert G. Synchronization in small-world dynami- cal networks[J]. Journal of Bifurcation and Chaos,2002,12 (1) :187-192.
  • 6Wang X F,Chen G. Synchronization in scale free dynamical networks :robustness and fragility [ J ]. IEEE Transactions on Circuits System, 2002,49 ( 1 ) : 54-62.
  • 7邹艳丽,陈关荣.Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions[J].Chinese Physics B,2009,18(8):3337-3346. 被引量:5
  • 8Hill D J, Zhao J. Global synchronization of complex dynami- cal networks with non-identical nodes[ C]//Proceedings of the 47th IEEE Conference on Decision and Control. Mexico: [ s. n. ] ,2008:817-822.
  • 9Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium[J].IEEE Transaction on Circuits and Systems-I: Regular Papers, 2004,51 ( 10 ) :2074 -2087.
  • 10Jiang G P,Tang W K S ,Chen G. A state-observer-based ap- proach for synchronization in complex dynamical networks [ J ]. IEEE Trans. on Circuits and Systems- I, 2006, 53 (12) :2739-2745.

二级参考文献27

  • 1Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109.
  • 2Zhuang Z Z, Zhou S G and Zou T 2007 Eur. Phys. J. B 56 259.
  • 3Gleiser P M and Zanette D H 2006 Eur. Phys. J. B 53 233.
  • 4Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101.
  • 5Nishikawa T, Motter A E, Lai Y C and Hoppensteadt F C 2003 Phys. Rev. Lett. 91 014101.
  • 6Hong H, Kim B J, Choi M Y and Hyunggyu P 2004 Phys. Rev. E 69 067105.
  • 7Wang X F and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54.
  • 8Gade P M and Hu C K 2000 Phys. Rev. E 62 6409.
  • 9Wang X F and Chen G 2002 Int. J. Bifur. Chaos 12 187.
  • 10Li R, Duan Z S and Chen G 2009 Chin. Phys. B 18 106.

共引文献4

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部