期刊文献+

基于多项式基的非对称量子纠错码的构造 被引量:2

Construction of Asymmetric Quantum Error-correcting Codes Based on Polynomial Basis
下载PDF
导出
摘要 量子纠错码在量子计算和量子通信中起着至关重要的作用。文中区别于之前关于量子纠错码的研究,之前大多关于量子纠错码的研究都在对称的量子信道上,所谓对称的量子信道是指量子比特翻转的错误概率与量子相位翻转的错误概率相等的信道。文中的研究侧重在非对称的量子信道上,所谓非对称性体现在量子相位翻转的错误概率与量子比特翻转的错误概率不相等,前者大于后者,利用经典多项式码,基于多项式基构造映射,满足了构造定理的条件,从而构造了一类非对称量子纠错码。 Quantum error-correcting codes play a very important role in both quantum computation and quantum communication, h is dif- ferent from the previous research work in quantum error-correcting codes that focuses on code constructions for symmetric quantum chan- nels ,the so-called symmetric quantum channel is the channel that phase-shift and qubit-flip errors have equal probabilities. It focuses on the asymmetric quantum channels ,the so-called asymmetric quantum channel is the channel that phase-shift and qubit-flip errors have different probabilities, and the former is greater than the later. By the classical polynomial codes, obtained the correct codes to meet the theorem's conditions,and a family of asynmmetric quantum error-correcting codes is obtained based on the polynomial basis.
出处 《计算机技术与发展》 2012年第8期143-145,149,共4页 Computer Technology and Development
基金 国家自然科学基金(61070234 61071167) 江苏省高校自然科学基金(04KJB110097 08KJB520023) 南京邮电大学攀登计划项目(NY207064)
关键词 自正交码 量子纠错码 非对称量子纠错码 多项式码 多项式基 self-orthogonal code quantum error-correcting code asymmetric quantum-error correcting code polynomial codes polyno-mial basis
  • 相关文献

参考文献15

  • 1Shor P W. Scheme for reducing decoherence in quantum mem- ory[ J], Phys Rev A,1995,52(4) :2493-2496.
  • 2Calderbank A R, Rains E M, Shor P M, et ai. Quantum error correction via codes over GF (4) [ J ]. IEEE Trans. on Inf. Theory, 1998,44 (4) : 1369-1387.
  • 3钱建发,马文平.新的非对称量子纠错码的构造[J].电子与信息学报,2009,31(12):2922-2925. 被引量:6
  • 4Chen H, Ling S, Xing C. Asymptotically good quantum codes exceeding the Ashikhmin- Litsyn- Tsfasman bound [ J ]. IEEE Trans. on Inf. Theory, 1998,47 (4) :2055-2058.
  • 5马智,冯克勤.量子纠错码的Gilbert-Varshamov界和有限酉几何[J].自然科学进展,2002,12(11):1202-1204. 被引量:4
  • 6郑大钟,赵千川.量子计算和量子信息(2)[M].北京:清华大学出版社,2005.
  • 7Sarvepalli P K, Klappenecker A, Rotteler M. Asymmetric quantum LDPC codes[ C]//Proceeding of the IEEE Interna- tional Symposium on Information Theory. Toronto, Canada: [ s. n. ] ,2008: 305-309.
  • 8Aly S A, IOappenecker A, Sarvepalli P K. On quantum and classical BCH codes[J]. IEEE Trans. on Inf. Theory,2007, 53(3) :1183-1188.
  • 9Grassl M, C, eiselmonn W, Beth T. Quantm Reed-Solomon Co- des[ J ]. Applicable Algebra in Engineering, Communication and Computation, 1999,13:231-241.
  • 10Ioffe L, Mezard M. Asymmetric quantum error-correcting eodes[J].Phys. Rev. A,2007,75(3): 86-90.

二级参考文献2

共引文献9

同被引文献20

  • 1勾荣.基于量子衍生方法的空域滤波图像增强算法[J].计算机系统应用,2020(10):179-184. 被引量:5
  • 2Chen Gong-gui , Liu Li-Ian, Song Pei-zhu, et al. Chaotic Improved PSG-based Multi-Objective Optimization for Minimization of Power Losses and L index in Power Systems[J]. Energy Conversion and Management ,2014,86(8) : 548-560.
  • 3J on Lark Kim,J udy Walker. Nonbinary Quantum Error-correcting Codes from Algebraic Curves[J]. Discrete Mathematics, 2008 , 308(6):3115-3124.
  • 4David Clark, Vladimir D. Tonchev. Nonbinary Quantum Codes Derived from Finite Geometries[J]. Finite Fields and Their Applications, 2012 ,180): 63-69,.
  • 5Kazuhiko Takahashi, Motoki Kurokawa v Masafumi Hashimoto. Multi-layer Quantum Neural Network Controller Trained by Real-coded Genetic Algorithm[J]. Neurocom p uting , 2014,134 (6) : 159-164.
  • 6Pablo Gamallo v Miguel Gonzalez, Fermin Huarte-Larranaga, Performance Analysis of Two Quantum Reaction Dynamics Codes: Time-dependent and Time-IndePendent Strategies[J]. Procedia Computer Science, 2013,18 (6) : 835-844.
  • 7Li Ruihu. Xue liang Li. Binary Construction of Quantum Codes of Minimum Distances Five and Six[J]. Discrete Mathematics, 2008,308(5):1603-1611.
  • 8Teodor Banica , Benoit Collins. Integration over the Pauli Quantum Group[J].J oumal of Geometry and Physics, 2008, 58(8) :942-961.
  • 9PhilippeJ aming. Uniqueness Results in an extension of Pauli's Phase Retrieval Problem[J]. Applied and Computational Harmonic Analysis, 2014 ,37(1): 413-441.
  • 10P Balasubramaniam, Ananthi V P. Image Fusion Using Intuitionistic Fuzzy Sets[J]. Information Fusion, 2014,20 (0): 21-30.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部