期刊文献+

自适应连续体/非连续体周期边界单元耦合技术在等效岩体中的应用研究 被引量:3

RESEARCH ON APPLICATION OF COUPLING TECHNIQUE OF ADAPTIVE CONTINUUM/DISCONTINUUM PERIODIC BOUNDARY CELL TO EQUIVALENT ROCK MASS
下载PDF
导出
摘要 介绍一种新颖的PFC颗粒流程序计算模型构建方法,即:自适应连续体/非连续体(AC/DC)周期边界单元耦合技术。该方法首先构建压实并达到力学平衡的周期组块,通过复制周期组块镜像快速建立颗粒体模型,因此,可避免模型在生成过程中耗费大量时间达到力学平衡状态的缺陷,从而大幅降低计算时间、节省计算资源。以一等效岩体单轴压缩试验为例,在相同初始计算条件下,比较分析AC/DC技术和常规颗粒体模型构建方法得到的计算结果,两者在单轴抗压强度、应力–应变曲线和变形破坏特征等方面表现出高度相似性,表明在保证计算结果准确性的前提下,AC/DC技术的计算效率远高于常规颗粒体模型构建方法,且这种优势将随着颗粒体规模的增大而越发突出。因此,该技术的应用可为后续研究工程尺度节理岩体力学性质等科学问题奠定坚实基础。 The coupling technique of adaptive continuum/discontinuum(AC/DC) periodic boundary cell, as a new construction method of calculation model in PFC based on particle flow theory, was introduced. In this method, a compacted and balanced pbrick was constructed; and then it was replicated mirrorlikely to construct particles model. Therefore, with decreasing computing time and saving computing resource greatly, it can avoid the defect of consuming great time in the generation of model to reach the mechanical equilibrium state. Taking an uniaxial compression test of equivalent rock mass for example, under the same initial calculation condition, the results produced by AC/DC technique and general method were compared in uniaxial compressive strength, stress-strain curves and failure characteristics, displayed highly similarity. The research results show that the computational efficiency of AC/DC technique is much higher than that of general particles construction method, and the advantage will be particularly prominent with the increment of model size. So its implementation of AC/DC technique can lay a solid foundation for following scientific research of engineering-scale rock mass property.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2012年第A01期3117-3122,共6页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(51074014 51174014) 长江学者和创新团队发展计划资助项目(IRT0950)
关键词 岩石力学 周期边界 周期组块 等效岩体 颗粒流 细观模型 rock mechanics periodic boundary: periodic brick: equivalent rock mass: particle flow: meso-scalemodel
  • 相关文献

参考文献13

  • 1BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics, 1974 6(4): 189- 236.
  • 2BARTON N. Some new Q-value correlations to assist in site characterization and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 185 - 216.
  • 3HOEK E, BROWN E T. Practical estimates of rock mass strength[J] International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts, 1997, 34(8): 1 165- 1 186.
  • 4BIENIAWSKI Z T. Engineering classification of jointed rock masses[J]. Civil Engineer in South Africa, 1973, 15(12): 335 - 344.
  • 5中华人民共和国国家标准编写组.GB50218-94工程岩体分级标准[s].北京:中国计划出版社,1995.
  • 6刘彬,聂德新,张勇,李树森.软硬相间层状复杂岩体综合变形模量原位试验研究[J].工程地质学报,2010,18(4):538-542. 被引量:12
  • 7罗寿斌.某深基坑边坡岩体的原位直剪试验研究[J].贵州大学学报(自然科学版),2010,27(4):97-100. 被引量:5
  • 8吴顺川,周喻,高利立,张晓平.等效岩体技术在岩体工程中的应用[J].岩石力学与工程学报,2010,29(7):1435-1441. 被引量:40
  • 9吴顺川,周喻,高斌.卸载岩爆试验及PFC^(3D)数值模拟研究[J].岩石力学与工程学报,2010,29(A02):4082-4088. 被引量:57
  • 10MAS IVARS D, PIERCE M T, DARCEL C, et al. The synthetic rock mass approach for jointed rock mass modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 219 - 244.

二级参考文献32

  • 1任重阳,唐爱松.岩体工程质量分级应用研究[J].岩土力学,2003,24(S1):53-57. 被引量:10
  • 2祝启虎,卢文波,孙金山.基于能量原理的岩爆机理及应力状态分析[J].武汉大学学报(工学版),2007,40(2):84-87. 被引量:21
  • 3工程岩体试验方法标准(GB/T50266-99)[M].北京:中国标准出版社,1993.
  • 4Standard test method for rock engineering.Beijing:Standard Publishing House of China,1999.
  • 5Li Xianwei.Mechanical properties of rock mass.Beijing:Coal Industry Press,1999.
  • 6DYSKIN A V, GERMANOVICH L N. Model of rock burst caused by cracks growing near free surface[C]//Proceedings of Rock bursts and Seismicity in Mines. Rotterdam, Netherlands: A.A. Balkema, 1993: 169- 174.
  • 7CUNDALL P A, STRACK O D L. Particle flow code in 2D[M]. Minnesota: Itasca Consulting Group, Inc., 1999.
  • 8POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1 329- 1 364.
  • 9POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 667-691.
  • 10HOEK E, BROWN E T. Underground excavation in rock[M]. [S. l.]: Taylor and Francis, 1990.

共引文献127

同被引文献41

  • 1Majid Noorian Bidgoli,Zhihong Zhao,Lanru Jing.Numerical evaluation of strength and deformability of fractured rocks[J].Journal of Rock Mechanics and Geotechnical Engineering,2013,5(6):419-430. 被引量:9
  • 2朱焕春,Andrieux Patrick,钟辉亚.节理岩体数值计算方法及其应用(二):工程应用[J].岩石力学与工程学报,2005,24(1):89-96. 被引量:34
  • 3向文飞,周创兵.裂隙岩体表征单元体研究进展[J].岩石力学与工程学报,2005,24(A02):5686-5692. 被引量:34
  • 4HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1997, 34(8): 1165-- 1186.
  • 5BARTON N. Some new Q-value correlations to assist in site characterization and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 185--216.
  • 6中华人民共和国国家标准编写者.GB50218-94工程岩体分级标准[S].北京:中国计划出版社,1995.
  • 7GERRARD C M. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982, 19: 9-- 14.
  • 8. FOSSUM A F. Effective elastic properties for a randomly jointed rock mass[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(6): 467--470.
  • 9BIENIAWSKI Z T, VAN HEERDEN W L. The significance of in situ tests on large rock specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomeehanics Abstracts, 1975, 12" 101-- 113.
  • 10RAMAMURTHY T, ARORA V K. Strength predictions for jointed rocks in confined and unconfined states[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31 (I): 9-- 22.

引证文献3

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部