期刊文献+

缓冲层对碳纳米管强流脉冲发射特性的影响

Influence of buffer layer on intense pulsed Field emission of Carbon Nanotubes
原文传递
导出
摘要 为了研究缓冲层对碳纳米管薄膜(CNTs)强流脉冲发射特性的影响,采用酞菁铁高温热解方法分别在镀镍和不镀镍硅基底上生长了碳纳米管薄膜(Ni-CNTs和Si-CNTs),镍层采用化学镀方法制备,强流脉冲发射特性采用二极结构在单脉冲下进行测试。实验发现,通过引入镍缓冲层,CNTs的强流脉冲发射能力显著增强。在峰值为~10.4 V/μm的脉冲场强下,平均开启电场强度从Si-CNTs的5.0V/μm下降到Ni-CNTs的4.3V/μm,而峰值发射电流和电流密度从Si-CNTs的70A和3.5 A/cm2升高到Ni-CNTs的162 A和8.1 A/cm2,Ni-CNTs的峰值电流比Si-CNTs提高了1.3倍。 In order to study influence of buffer layer on intense pulsed field emission (IPFE) of carbon nanotube films (CNTs), CNTs were synthesized on Si substrate with and without electroless plated Ni buffer respectively (Ni- CNTs and Si- CNTs) by pyrolysis of iron phthalocyanine (FePc). IPFE prop-erties of Si -CNTs and Ni -CNTs were measured with a diode structure in single -pulse mode. It was found that the emission ability of CNTs were improved obviously by introducing Ni buffer layer. The even turn - on field decreased from 5.0V/~m for Si - CNTs to 4.3V/p^m for Ni - CNTs, and the peak emis- sion current and current density increased from 70 A and 3.5 A/cm2 for Si - CNTs to 162 A and 8.1 A/ cm2 for Ni - CNTs at a peak field intensity - 10.4 V/ixm. The peak current of the Ni - CNTs increased by - 131.4% over the Si - CNTs at the same peak electric field.
出处 《功能材料与器件学报》 CAS CSCD 北大核心 2012年第3期243-246,共4页 Journal of Functional Materials and Devices
基金 国家自然科学基金项目(51072184 50972132 51002143 60801022) 航空科学基金项目(2009ZE55003 2010ZF55013 2011ZF55015) 河南省基础与前沿技术研究计划项目(112300410264) 河南省教育厅自然科学基金项目(2011A140027) 辽宁省自然科学基金项目(20082050)
关键词 强流脉冲发射 化学镀 Ni缓冲层 碳纳米管 intense pulsed emission electroless plating nickel buffer layer carbon nanotubes
  • 相关文献

参考文献13

  • 1Iijima S. Helical microtubules of graphitic carbon [ J ]. Na- ture, 1991, 354(6348) :56 -58.
  • 2Yang D J, Wang S G, Zhang Q, et al. Thermal and electri- cal transport in multiwalled carbon nanotubes [ J ]. Phy. Lett. A, 2004, 329(3):207-213.
  • 3Novak J P, Lay M D, Perkins F K, et al. Macroelectronic applications of carbon nanotube networks [ J ]. Solid - State Ele, 2004, 48(10) :1753 - 1756.
  • 4Tsukagoshi K, Yoneya N, Uryu S, et al. Carbon nanotube devices for nanoeleetronics [ J ]. Phy. B : Condensed Mat- ter, 2002, 323 ( 1 ) : 107 - 114.
  • 5Fennimore A M. Rotational actuators basedon carbon nano- tubes[J]. Nature, 2007, 424(6947):408-410.
  • 6Kawakita K, Hata K, Sato H, et al. Development of micro- focused X -ray source by using carbon nanotuhe field emit- ter[J]. J Vac Sci Technol B, 2006, 24(2) :950 -952.
  • 7Teo K B K, Minoux E, Hudanski L, et al. Microwave de- vices: carbon nanotubes as cold cathodes [ J ]. Nature, 2005,437 (7061) :968 - 969.
  • 8Bonard J M, Dean K A, Coil B F, et al. Field emissi on of individual carbon nanotubes in the scanning electron micro- scope[J]. Phys Rev Lett , 2002, 89(19):7602-7605.
  • 9Seelaboyina R, Huang J, Choi W B. Enhanced field emis- sion of thin multiwall carbon nanotubes by electron multipli- cation from microchannel plate[ J]. Appl Phys Lett, 2006, 88(19) :194104 - 194106.
  • 10曾凡光,李昕,左曙,夏连胜,谌怡,刘星光,张篁,张锐.硅基底上热解法生长CNT薄膜的强流脉冲发射特性[J].功能材料,2011,42(4):609-611. 被引量:4

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部