期刊文献+

基于局部权值阈值调整的BP算法的研究 被引量:4

Study of BP Algorithm Based on a Partial Adjustment of Weight and Threshold Value
下载PDF
导出
摘要 文章针对BP算法收敛速度慢的问题,提出一种基于局部权值阈值调整的BP算法。该算法结合生物神经元学习与记忆形成的特点,针对特定的训练样本,只激发网络中的部分神经元以产生相应的输出,而未被激发的神经元产生的输出则与目标输出相差较大,那么我们就需要对未被激发的神经元权值阈值进行调整。所以该论文提出的算法是对局部神经元权值阈值的调整,而不是传统的BP算法需要对所有神经元权值阈值进行调整,这样有助于加快网络的学习速度。 The paper proposed a BP algorithm based on a partial adjustment of the weight and threshold value. According to the charae-teristics of biological neuron in learning and memory formation, only some neurons were stimulated to produce the output for the specific training samples, while the other part of the neurons weren't stimulated. There are large difference between this part of the neuron's output and target, and then we need this part neurons weight and threshold value to adjust. Therefore the algorithm proposed in this paper only adjust the weight and the threshold value of the local neurons, and this can accelerate the learning speed of the network.
作者 刘彩红
出处 《计算机与数字工程》 2012年第7期25-27,共3页 Computer & Digital Engineering
关键词 BP神经网络 学习算法 距离 权值阈值调整 13P neural network learning algorithm distance weight and threshold adjustment
  • 相关文献

参考文献9

  • 1Ang JH, Tan KC, A1-Mamun A. Training neural networks for classification using growth probability-based evolution[J]. Neurocomputing (S0925-2312), 2008,71 (16-18) : 3493-3508.
  • 2Ling SH, Lam HK, Leung FHF, Lee YS. An Improved GeneticAlgorithm-Based Neural-Tuned Neural Network[J]. International Journal of Computational Intelligence and Applications (S1469-0268) ,2008,7(4) ; 469-492.
  • 3Luehetta A. Automatic generation of theoptimum threshold for parameter weighted pruning in multiple heterogeneous output neural networks [J ]. Neurocomputing ( S0925-2312 ), 2008, 71 (16-18) :3553-3560.
  • 4Ni J, Song Q. Dynamic pruning algorithm for multilayer perceptron based neural control systems[J]. Neurocomputing(S0925-2312), 2006,69(16-18) :2097-2111.
  • 5唐万梅.BP神经网络网络结构优化问题的研究[J].系统工程理论与实践,2005,25(10):95-100. 被引量:73
  • 6Leon G. Reijmers, Brian L. Perkins. Science[J]. Localization of a Stable Neural Correlate of Associative Memory, 2007, 317 (598) : 1230-1233.
  • 7廖晓峰,李传东.神经网络研究的发展趋势[J].国际学术动态,2006(5):43-44. 被引量:12
  • 8刘鹏军,马孝尊,武忠国,王岩,刘志浩.基于BP神经网络的SAR干扰效果评估[J].舰船电子工程,2009,29(2):88-90. 被引量:12
  • 9朱仁峰.精通MATIAB7[M].北京:清华大学出版社,2006,5.

二级参考文献12

共引文献94

同被引文献37

  • 1罗颖锋,曾进.基于支持向量机的燃气轮机故障诊断[J].热能动力工程,2004,19(4):354-357. 被引量:18
  • 2张铃,张钹.神经网络中BP算法的分析[J].模式识别与人工智能,1994,7(3):191-195. 被引量:58
  • 3孙琎烨,陈克安.一种应用于多通道自适应有源控制的快速算法[J].电声技术,2006,30(1):52-56. 被引量:2
  • 4韩立群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
  • 5段海滨.蚁群算法及其应用[M].北京:科学出版社,2005:98-101.
  • 6Kumar M. Signature verification using neural network [J]. International Journal on Computer Science and Engineering,2012,4(9) :1498 - 1504.
  • 7Prakash A, Mohanty R P. A study of service quality in healthcare system using artificial neural network [J]. The XIMB Journal of Management, 2012,9 (2) : 47 - 61.
  • 8李晓燕.基于神经网络的自适应噪声抵消的研究[D].武汉:武汉理工大学,2010.
  • 9苏畅,徒君.一种自适应最大最小蚁群算法[J].模式识别与人工智能,2007,20(5):688-691. 被引量:14
  • 10SOCHA K, BLUM C. An ant colony optimization algorithm for continuous optimization: application to feed - forward neural training [ J 1. Neural Computing and Applications, 2007,16 (3) :235 - 247.

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部