期刊文献+

Sturm-Liouville边值问题三个正解的存在性 被引量:1

Three Positive Solutions for the Sturm-Liouville Boundary Value Problems
下载PDF
导出
摘要 给出了Sturm-Liouville边值问题三个正解存在性的条件,并利用Leggett-Williams不动点定理证明了主要结论. We establish the existence of three positive solutions for the Sturm-Liouvil|e boundary value problem, and the proof is based upon the Leggett-Williams fixed point theorem.
机构地区 广西师范大学
出处 《广西师范学院学报(自然科学版)》 2012年第2期29-33,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西教育厅科研资助项目(201012MS025) 广西壮族自治区研究生教育创新计划(2011106020701M37)
关键词 LEGGETT-WILLIAMS不动点定理 三个正解 STURM-LIOUVILLE边值问题 Leggett-Williams fixed point theorem cone three positive solutions Sturm-Liouvilleboundary value problem
  • 相关文献

参考文献12

  • 1ANURADHA V, HAI D D, SHIVAJI R. Existence results for superlinear semipositive BVP' s[J]. Proc Amer Math Soc, 1996, 124: 757-763.
  • 2AGARWAL R P, et al. The existence of positive solutions for Sturm-Liouville boundary value problems[J]. Comp Math Appl, 1998, 35: 89-96.
  • 3GE Weigao, XUE Chunyan. Some fixed point theorems and existence of positive solutions of two-point boundary-value problems[J]. Nonlinear Analysis, 2009, 70: 16-31.
  • 4GE Weigao, REN Jingli. New existence theorems of positive solutions for Sturm-Liouville boundary value problems[J ]. Appl Math Comput, 2004,148 : 631-644.
  • 5LIU Xiujun, QIU Jiqing, GUO Yanping. Three positive solutions for second-order m-point boundary value problems [J]. Applied Mathematics and Computation, 2004, 156: 733-742.
  • 6MA Ruyun. Multiple nonnegative solutions of second-order systems of boundary value problems[J ]. Nonlinear Analysis, 2000, 42: 1003-1010.
  • 7FENG Hanying, GE Weigao. Existence of three positive solutions for m-point boundary-value problems with one-dimen- sional p-Laplacian[J]. Nonlinear Analysis, 2008, 68: 2017-2026.
  • 8XU Fuji. Multiple positive solutions for nonlinear singular m-point boundary value problem[ J ]. Applied Mathematics and Computation, 2008, 204: 450-460.
  • 9JIANG Weihua, GUO Yanping. Multiple positive solutions for second-order m-point boundary value problems l J]. J Math Anal Appl, 2007, 327: 415-424.
  • 10YANG Liu, LIU Xiping, JIA Mei. Multiple results for second-order m-point boundary value proclem[J]. J Math Anal Appl, 2006, 324: 532-542.

同被引文献23

  • 1Jackson F H. On q - difference equations [ J ]. Am J Math, 1910,32 (4) :305 - 314.
  • 2Carmichael R D. The general theory of linear q - difference equations [ J ]. Am J Math, 1912,34 ( 2 ) : 147 - 168.
  • 3Mason T E. On properties of the solutions of linear q - difference equations with entire function coefficients [ J ]. Am J Math 1915,37(4) :439 -444.
  • 4Adams C R. On the linear ordinary q - difference equation [ J ]. Ann Math, 1928,30 (4) : 195 - 205.
  • 5Finkelstein R, Marcus E. Transformation theory of the q -oscillator[ J]. J Math Phys,1995 ,36 :2652 -2672.
  • 6Finkelstein R. The q - Coulomb problem[ J]. J Math Phys, 1996,37:2628 - 2636.
  • 7Gasper G, Rahman M. Basic Hypergeometric Series[ M ]. Cambridge : Cambridge University Press, 1990.
  • 8Kac V, Cheung P. Quantum Calculus [ M ]. New York : Springer - Verlag,2002 : 1 - 5.
  • 9Bangerezako G. Variational q - calculus [ J ]. J Math Anal Appl,2004,289 ( 2 ) : 650 - 665.
  • 10Ahmad B, Ntouyas S K. Boundary value problems for q - difference inclusions [ J ]. Abst Appl Anal ,2011,201 1:15.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部