期刊文献+

基于超高频数据的日内风险价值度量研究

Intraday VaR Measurement based on Ultra-high Frequency Data
下载PDF
导出
摘要 随着金融市场的快速发展,传统的以日为单位的风险价值(VaR)已无法满足金融风险管理的需求,计算持有期小于1天的日内风险价值(Intraday VaR)显得愈加重要。文中对日内风险价值测度的方法进行了梳理、细化和改进,对测度中细节给予更加充分的考虑,最后结合我国股市特点对日内风险价值测度进行了实证研究。 With the rapid development of financial markets,the traditional VaR which is measured by day has been unable to satisfy the demand of financial risk management.Calculating intraday value at risk whose holding period is less than one day becomes increasingly important.This article sorted and refined and improved measure method of IVaR,and gave full consideration to the details of the measurement.In the end,combined with the characteristics of China’s stock market,we did an empirical study on IVaR.
作者 苗晓宇
出处 《上海金融学院学报》 2012年第3期29-34,46,共7页 Journal of Shanhai Finance University
关键词 高频数据 日内风险价值 蒙特卡洛模拟 High Frequency Data Intraday Value at Risk Monte Carlo Simulation.
  • 相关文献

参考文献7

  • 1Dionne, G,P.Duchesne. Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange[J].Journal of Empirical Finance,2009,(05):777-792.
  • 2刘晓星.流动性调整地风险价值度量:基于金融高频数据的实证分析[J].系统工程理论与实践,2009,29(7):16-26. 被引量:3
  • 3Engle R F. The econometrics of ultra-high-frequency[J].Econometrica,2000,(01):1-22.
  • 4Engle, R.F,J.R.Russell. Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model[J].Journal of Empirical Finance,1997,(2-3):187-212.
  • 5Engle, R.F,J.R.Russell. Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data[J].Econometrica,1998,(05):1127-1162.
  • 6Ghysels, E,J.Jasiak. GARCH for Irregularly Spaced Data: The ACD-GARCH Model[M].1998.
  • 7邵锡栋,连玉君,黄性芳.交易间隔、超高频波动率与VaR——利用日内信息预测金融市场风险[J].统计研究,2009,26(1):96-102. 被引量:21

二级参考文献23

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部