期刊文献+

Implementing a topological quantum model using a cavity lattice 被引量:4

Implementing a topological quantum model using a cavity lattice
原文传递
导出
摘要 Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded A-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations. Kitaev model has both Abelian and non-Abelian anyonic excitations.It can act as a starting point for topological quantum computation.However,this model Hamiltonian is difficult to implement in natural condensed matter systems.Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded Λ-type three-level atoms.In this scheme,several parameters are tunable,for example,via external laser fields.Importantly,our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第9期1549-1556,共8页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Basic Research Program of China(Grant No. 2009CB929302) the National Natural Science Foundation of China (Grant No. 91121015) the Ministry of Education of China (GrantNo. B06011) the U.S. National Science Foundation (Grant No. PHY-0925174)
关键词 quantum simulation topological quantum model cavity electrodynamics 量子模型 拓扑 哈密顿量 三能级原子 ev模型 量子计算 量子模拟 阿贝尔
  • 相关文献

参考文献31

  • 1Qi X L, Zhang S C. The quantum spin Hall effect and topological insula- tor. Phys Tod, 2010, 63:33-38.
  • 2Hasan M Z, Kane C K. Colloquium: Topological insulator. Rev Mod Phys, 2010, 82:3045-3067.
  • 3Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological Quantum computation. Rev Mod Phys, 2008, 80:1083-1159.
  • 4Kitaev A. Fault-tolerant quantum computation by anyons. Ann Phys, 2003, 303:2-30.
  • 5Levin M A, Wen X G. String-net condensation: A physical mechanism for topological phases, Phys Rev B, 2005, 71:045110.
  • 6Einarsson T. Fractional statistics on a toms. Phys Rev Lett, 1990, 64: 1995-1998.
  • 7Das Sarma S, Freedman M, Nayak C. Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. Phys Rev Lett, 2005, 94:166802.
  • 8Kitaev A. Anyons in an exactly solved model and beyond. Ann Phys, 2006, 321:2-111.
  • 9Feng X Y, Zhang G M, Xiang T. Topological characterization of quantum phase transitions in a spin-1/2 model. Phys Rev Lett, 2007, 98:087204.
  • 10Kells G, Slingerland J K, Vala J. Description of Kitaev's honeycomb model with toric-code stabilizers. Phys Rev B, 2009, 80:125415.

同被引文献23

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部