摘要
提出了一种新型的PSR建模方法,该方法建立针对复杂多观测系统的近似预测模型S-PSR,将系统中的检验和经历依据归属关系进行归类划分,利用稀疏分布记忆(SDM)存储结构进行模型当前状态保存和状态更新,实现了对多观测系统复杂数据的处理。实验表明,该近似模型相比其他模型具有更好的预测准确性。
this paper proposed a new model creation method for PSR. The method constructed the approximate prediction model for complex multi-observations system-S-PSR. The new model divided the tests and the histories for classification based on relation. Furthermore the model finished the state saving and updating by using SDM and realized the process of complex data on multi-observation system. The result shows that the proposal model is better than other model in prediction error.
出处
《计算机应用研究》
CSCD
北大核心
2012年第8期2988-2990,共3页
Application Research of Computers
基金
国家自然科学基金资助项目(60773049)
关键词
多观测系统
预测状态表示
稀疏分布记忆
系统模型
multi-observation system
predictive state representation (PSR)
sparse distribution memory ( SDM )
system modeling