期刊文献+

青海省短时强对流天气雷达自动预警技术应用初步研究 被引量:4

Preliminary study on application of radar auto-warning technology to short-time strong convective weather forecasting in Qinghai
下载PDF
导出
摘要 针对WSR-88D冰雹算法虚警率较高,且可修改的可调参数有限的缺点,根据青海省短时强对流天气的雷达预警指标,自动识别强对流云和发布强对流天气预警(简称自动预警技术)。使用雷达体扫基数据,将自动预警技术初步应用于2010年青海省东部12个强对流风暴日过程,并与基于WSR-88D风暴产品的人工预警结果进行对比分析。结果表明:自动预警平均比实况提前时间大于25 min,其数据处理效率和预警正确率远高于人工预警;自动预警技术的降水预警正确率为91%、虚警率为9%,而人工预警的降水预警正确率75%,人工与自动预警的降雹正确率均为100%。在短临天气预警预报业务中,将自动预警技术作为WSR-88D算法的辅助识别技术,可进一步提高强对流天气预警预报的正确率和提高短临天气业务的自动化程度。 Aimed at the two drawbacks of hail algorithm (88D): the high false acceptance rate (FAR) and the limited revisable parameters, an automatic warning (AW) technology which can distinguish the strong convection cloud and release the warning signal automatically is in- troduced in this paper. Using the base data of volume scanning of radar, the AW technology is applied to 12 strong convection weather pro- cesses in the east of Tibetan Plateau in 2010 and then the data gotten by the AW technology is compared with the data gotten by manual warn- ing based on products of 88D. The results show that the data handling efficiency and warning accuracy of AW are considerably higher than that of manual warning. The AW release time is 25 minutes earlier than the occurrence time of the actual weather on an average. The precipi- tation accuracy of AW is 91%, FAR is 9% while the precipitation accuracy of manual warning is 75%. In term of hail events, the accuracies of both AW and manual warning are 100%. In conclusion, the accuracy of short-time strong convective weather forecasting and warning would be further improved and the degree of automation of short-time weather forecasting would be developed through putting the AW technology into algorithm (88D) as an assisted technology.
出处 《暴雨灾害》 2012年第2期182-187,共6页 Torrential Rain and Disasters
基金 青海省科技厅项目"青海省短时强降水预报预警方法研究"(2011-Z-712)
关键词 强对流 天气雷达 自动预警 strong convection weather radar automatic warning
  • 相关文献

参考文献17

  • 1Rinehart R E, Garvey E T. Three-dimensional strom motion detection by conventional weather radar [J]. Nature, 1978,273: 287-297.
  • 2Austin G L, Bellon. Very short-range forecast of precipitation by the ob- jective extrapolation of radar and satellite data [M]//Nowcasting A K Broning. ed. Academic Press. 1982:177-90.
  • 3Dixon M J, Wiener G. TITAN: Thunder storm identification, tracking, analysis and nowcasting---a radar based methodology [J], J Atmos Oce- anic Tech, 1993, 10(6): 785-797.
  • 4Witt A, Eihs M D, Stumpf G J, et al. An Enhanced Hail Detection Algo- rithm for the WSR-88D [J]. Wea Forec, 1998, 13(2): 286-303.
  • 5Johnson J T, Pamela L, Mackeen, et al. The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm [J]. Wea Foree, 1998, 13(2): 263-276.
  • 6李力,汤达章.一种新的跟踪雷达回波特征量-矩不变量[J].南京气象学院学报,1989,12(3):1-8.
  • 7胡雯.模糊聚类法用于建立预报强对流回波移动模式[D].南京气象学院,1991:5-76.
  • 8刘黎平,徐宝祥,王致君.利用矩心跟踪法跟踪、警戒强对流天气方法初探[J].高原气象,1991,10(3):317-324. 被引量:12
  • 9肖艳姣,汤达章,李中华,蒋义芳.风暴的自动识别、跟踪与预报[J].南京气象学院学报,1998,21(2):223-229. 被引量:27
  • 10杨引明.风暴的多普勒雷达自动识别、跟踪、预报及冰雹探测[D].南京气象学院,1998:6-80.

二级参考文献57

共引文献228

同被引文献53

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部