期刊文献+

基于距离函数的3种夹具定位分析方法的比较 被引量:1

Comparison among three fixturing analysis methods based on distance function
下载PDF
导出
摘要 建立了点-面、面-面有向距离函数的一阶、二阶微分表达式的统一理论模型.在此理论模型的基础上提出了线性方法(基于点面距离函数一阶微分性质)、单边二次方法(基于点-面距离函数一、二阶微分性质)和双边二次方法(面-面距离函数一、二阶微分性质)的3种夹具定位分析方法,进而分析了定位元和工件的局部曲率对夹具定位精度的影响.仿真试验表明:当定位元的曲率半径相对于工件的曲率半径较小时,3种分析方法的精度相当;但当定位元的曲率半径相对于工件的曲率半径较大时,线性方法、单边二次方法不能跟踪理论值的变化,而双边二次方法却能很好地跟踪理论值的变化,表明了双边二次模型的高精度特性. The first order and the second order Taylor expansions of surface-to-surface distance were deduced and then were naturally extended to point-to-surface distance functions to build a unified framework.Consequently a linear method(based on the first-order differential property of PSSD(point-to-surface signed distance)),a one-sided quadratic method(based on the first-order and the second-order differential properties of PSSD) and a two-sided quadratic method(based on the first-order and the second-order differential properties of SSSD(surface-to-surface signed distance)) were proposed under this framework.Analyses were carried out to find out the effect of the curvatures of locators and workpieces on the fixturing accuracy.The simulation results show that the three methods provide similar precision when the curvature of locators is small relative to the curvature of workpieces.However,when the curvature of locators is large relative to the curvature of workpieces,the two-sided quadratic method provides the highest precision while the one-sided quadratic and the linear method cannot track the theory values well.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期649-653,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51105075) 上海市基础研究重点资助项目(10JC1408000) 东南大学创新基金资助项目(3202001502)
关键词 有向距离函数 夹具定位分析 线性方法 单边二次方法 双边二次方法 signed distance function fixturing analysis linear method one-sided quadratic method two-sided quadratic method
  • 相关文献

参考文献1

共引文献6

同被引文献9

  • 1ASADA H, BY A. Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures[J]. IEEE Trans. on Robotic and Automation, RA-1, 1985, 1(2): 86-94.
  • 2CHOU Y C, CHANDRU V, BAR_ASH M M. Mathematical approach to automatic configuration of machining fixtures: Analysis and synthesis[J]. Journal of Engineering for Industry, 1989, 111(4): 299-306.
  • 3CAI W,-FIU S J, YUAN J X. Variational method of robust fixture configuration design for 3-D workpieces[J]. Journal of Manufacturing Science and Engineering, Transactions oftheASME, 1997, 119(4): 593-602.
  • 4WANG M Y. An optimum design for 3-D fixture synthesis in a point set domain[J]. IEEE Transactions on Robotics and Automation , 2000, 16(6); 839-846.
  • 5WANG M Y, PELINESCU D M. Optimizing fixture layout in a point-set domain[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3)- 312-323.
  • 6CARLSON J S. Quadratic sensitivity analysis of fixtures and locating schemes for rigid parts[J]. Journal of Manufacturing Science and Engineering, 2001, 123(3): 462-470.
  • 7CAO J, LAI X M, CAI W, et al. Workpiece positioning analyses: The exact solutions and a quadratic variation approximation using the method of moments[J]. Journal of Manufacturing Science and Engineering, 2008, 130(6): 061013.
  • 8WANG M Y, LIU T, PELINESCU D M. Fixture kinematic analysis based on the full contact model of rigid bodies[J]. Journal of Manufacturing Science and Engineering, 2003, 125(2): 316-324.
  • 9LUO C, ZHU L M, DING H. Two-sided quadratic model for workpiece fixturing analysis[J]. Journal of Manufacturing Science and Engineering, Transactions of theASME, 2011, 133(3): 031004.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部