期刊文献+

基于信息学理论的基因数据挖掘研究

Study of Gene Data Mining based on Informatics Theory
下载PDF
导出
摘要 在冗余和相关分析的基础上,进行特征选择和结合流形学习理论,提出了一种开展系统研究的模型,并对5个基因表达数据集(NCI、Lymphoma、Lung、Leukemia、Colon)开展了疾病分类研究。实验结果表明,这种建模系统在降低数据处理计算量的同时,能有助于特征基因数目的确定,并进而提高疾病分类的准确度,在诊断和个体化治疗方案的制定方面有着很好的应用前景。 By combining with informatics theory, ta system model consisting of feature selection which is based on redundancy and correlation is presented to develop disease classification research with five gene data set(NCI, Lymphoma, Lung, Leukemia, Colon). The result indicates that this modeling method can not only reduce data management computation amount, but also help confirming amount of features, further more improve classification accuracy, and the application of this model has a bright foreground in fields of disease analysis and individual treatment project establishment.
出处 《中国医疗器械杂志》 CAS 2012年第4期248-251,共4页 Chinese Journal of Medical Instrumentation
基金 国家自然科学基金资助 项目编号:60971044
关键词 基因 特征选择 信息学 流形学习 疾病分类 gene, feature selection, informatics theory, manifold learning, disease classification
  • 相关文献

参考文献16

二级参考文献35

  • 1[1]HYVRINEN A.Survey on independent component analysis[J].Neural Computing Surveys,1999,2 (4):94-128.
  • 2[2]TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3 (1):71-86.
  • 3[3]GONZALEZ R C,WOODS R E.Digital image processing:2nd ed[M].Beijing:Publishing House of Electronics Industry,2003.
  • 4[4]SEUNG H S,LEE D D.The manifold ways of perception[J].Science,2000,290(5500):2268-2269.
  • 5[5]TENENBAUM J,SILVA D D,LANGFORD J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6[6]ROWEIS S,SAUL L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7[9]ZHANG C S,WANG J,ZHAO N Y,ZHANG D.Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction[J].Pattern Recognition,2004,37(1):325-336.
  • 8[13]BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 9[14]ZHANG Z Y,ZHA H Y.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal of Scientific Computing,2005,26(1):313-338.
  • 10[15]SIMARD P Y,LECUN Y A,DENKER J S.Efficient pattern recognition using a new transformation distance[J].Advances in Neural Information Processing Systems,1993(5):50-58.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部