期刊文献+

Daubechies条件小波有限元法研究

Study on Daubechies conditional wavelet finite element method
下载PDF
导出
摘要 为拓展小波理论在结构工程中的应用,提高结构计算精度,提出了以Daubechies条件小波Ritz法为基础的Daubechies条件小波有限元法。该法结合广义变分原理和拉格朗日乘子法构造修正泛函,根据修正泛函的驻值条件得到全域法求解方程矩阵。根据构件的边界条件,按左右边界对求解矩阵进行相应拆分,构建条件小波单元刚度矩阵,并依据公共节点位移相等原则形成总体刚度矩阵,由此解得各单元的小波基待定系数,即可进一步求解位移场函数、内力分布函数及荷载集度函数。以工程中常见的弹性拉压杆及平面弯曲梁为例,详细阐述了该方法的构造过程。并通过典型算例将Daubechies条件小波有限元法计算值与理论解进行了对比,结果表明:在弹性拉压杆算例中,位移、应力、载荷集度的相对误差均在1.22×10-3%以内;在平面弯曲梁算例中,挠度、弯矩、载荷集度的相对误差均在8.91×10-2%以内。 In order to develop the application of wavelet theory in structure engineering,and to improve the accuracy of structural computation,Daubechies conditional wavelet Finite Element Method is proposed,which is based on Daubechies conditional wavelet Ritz method.Daubechies conditional wavelet finite element method combines generalized variational principle with the Lagrangian multiplier to build a new modified functional,according to its stationary condition,the matrix equation based on full domain is constructed.Based on the boundary condition of structural members,the coefficient matrix is split by considering the left and right boundary condition,and the conditional wavelet element stiffness matrix is constructed,then the global stiffness matrix is assembled according to the rule of equal displacement in common nodal.The undetermined coefficients of wavelet primary function of all units can be obtained,and the internal force distributed function and load intensity distributed function can be solved out too.Taking common used structural members——elastic bar and plane bending beam as examples,the construction of Daubechies conditional wavelet FEM is introduced in detail. Typical examples are taken to compare the computation results between Daubechies conditional wavelet Finite Element Method and theoretical method.In elastic bar example,the maximum relative error between Daubechies conditional wavelet Finite Element Method and theoretical method of displacement,stress,load distribution respectively is within 1.22×10-3 %,in plane bending beam example,the maximum relative error between Daubechies conditional wavelet Finite Element Method and theoretical method of deflection,bending moment,load distribution respectively is within 8.91×10-2 %.
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第4期353-360,481-482,共8页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金资助项目(51008247)
关键词 DAUBECHIES小波 条件小波 有限元法 广义变分原理 拉格朗日乘子 Daubechies wavelet,conditional wavelet,finite element method,generalized variational principle,Lagrangian multiplier.
  • 相关文献

参考文献8

二级参考文献19

  • 1刘庆潭,倪国荣.具有弹性支座及弹性地基的梁弯曲自由振动的传递矩阵法求解[J].长沙铁道学院学报,1994,12(1):95-103. 被引量:5
  • 2马军星,王进.弹性地基梁小波有限元分析[J].系统仿真学报,2007,19(10):2183-2185. 被引量:7
  • 3WELLS R O,ZHOU X. Wavelet solutions for the Dirichlet problem [J]. Numer Math, 1995, 70: 379-396.
  • 4DAUBECHIES I. Ten Lectures on Wavelets[A].CBMS-NSF regional conference series in applied mathematics, Dept. of Mathematics, Univ. of Lowell, MA., Society for Industrial and Applied Mathematics[C]. Philadelphia, 1992.
  • 5BURRUS C S, GOPINATH R A, GUO H. Introduction to Wavelets and Wavelet Transforms-A Primer[M]. Prentice-Hall, Inc. , Upper Saddle River, NJ.1998.
  • 6BARKER V A. Computing Connection Coefficients[R].Department of Mathematical Modelling, Technical University of Denmark, Lyngby, 1996.
  • 7WEI G W, ZHANG D S, ALTHORPE S C, et al.Waveletdistributed approximating functional method for solving the Navier-Stokes equation[J]. Comput Phys Comm, 1998, 115:18-24.
  • 8Chang Newchen.Solution of beam on elastic foundation by DQEM[J]. Journal of Engineering Mechanics,1998,124(12):1381-1384.
  • 9钱伟长.变分法与有限元[M].北京:科学出版社,1980..
  • 10周又和,第七届全国现代数学和力学会议文集,1997年,464页

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部