期刊文献+

带时滞的二元神经元网络的OPNCL控制和复杂网络的时间延迟反馈控制 被引量:2

OPNCL control of nerve cell network of two neurons with delays and chaos anti-control of complex network based on TDF method
下载PDF
导出
摘要 针对一种带时滞的二元神经元网络和一种复杂网络的混沌控制问题,利用开环加非线性闭环(Open Plus Nonlinear Closed Loop,OPNCL)方法和时间延迟反馈控制(Time Delay FeedbackControl,TDFC)方法,分别设计了该混沌网络和混沌系统的控制器。从理论上证明了第一种控制器可使该网络系统的解稳定地传递到选定的目标,并通过数值模拟实验进一步验证了两种方法的有效性。结果表明:该方法避免了开环加非线性闭环控制的一些限制因素;对于任何目标,所控制混沌系统的传递域(Basins of Entrainment)是全局的,避免了有关确定传递域范围的繁琐计算。 In this paper the chaotic control problem of nerve cell network of two neurons with delays and the chaotic anti-control problem of complex network are studied.By using Open Plus Nonlinear Closed Loop(OPNCL) method,a kind of controller of the chaotic neural network is designed.The theoretical analysis shows that the solution of the network system can be stably transferred to the selected aim by using this kind of controller.The experiments of numerical simulations are provided to further demonstrate the effectiveness of the method.Based on the time delay feedback(TDF) method,a kind of controller of the chaotic system is designed.The theoretical analysis shows that the controller can make chaotic property of the complex network stronger.The validity of scheme mentioned is further verified by numerical simulation experiments.The method avoids some limiting factor of Open Plus Nonlinear Closed Loop control,basins of entrainment of chaotic system controlled are global for any aim,which avoids the complicated computation about confirming the bound of basins of entrainment.
作者 唐谦 王兴元
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第4期410-415,485,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(61173183 60573172 60973152) 高等学校博士学科点专项科研基金(20070141014) 辽宁省自然科学基金(20082165) 中央高校基本科研业务费专项资金(DUT12JB06)
关键词 二元神经元网络 复杂网络 混沌控制 混沌系统 选定的目标 nerve cell network of two neurons,complex network,chaos control,chaotic system,selected aim.
  • 相关文献

参考文献20

  • 1GoPalsamy K, Leung I. Delay induced periodicity in a neural network of excitation and inhibition[J]. Physica D, 1996, 89 (3-4): 395-426.
  • 2Olien L, Blair J. Bifurcation, stability and monotonicity properties of a delayed neural network model[J]. Physica D, 1997, 102(3-4): 349-363.
  • 3Gopalsamy K, Sariyasa S. Time delays and stimulus-dependent pattern formation in periodic environments in isolated neurons[J]. IEEETransNeuralNetwork, 2002, 13(3): 551-563.
  • 4Shayer L, Campbell S. Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays[J]. SIAM Journal ApplliedMathematics, 2000, 61(2): 673-700.
  • 5Faria T. On a planar system modeling a neuron network with memory[J]. Journal Differential Equations, 2000, 168(1): 129-149.
  • 6Huang L, Wu J. Nolinear waves in networks of neurons with delayed feedback: pattern formation and continuation[J]. SIAM Journal Mathematics Analysis, 2003, 34(4): 836-860.
  • 7Chen Y, Wu J. Minimal instability and unstable set of a phase-locked periodic orbit in a delayed neural network[J]. Physica D, 1999, 134(2): 185-199.
  • 8Huang Chuangxia, Huang Lihong. Dynamics analysis of several classes of neural network models[D]. Hunan.. Hunan University, 2006: 25-41.
  • 9Jackson E A. The antrainment and migration controls of multiple-attractor systems[J]. Phys LettA, 1990, 151(9): 478-484.
  • 10Hubler A, Luscher E. Resonant stimulation and control of nonlinear oscillators[J]. Naturwissenschaften, 1989, 76(2):67-69.

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部