期刊文献+

代价敏感的列表排序算法 被引量:3

Cost-Sensitive Listwise Ranking Approach
下载PDF
导出
摘要 排序学习是信息检索与机器学习中的研究热点之一.在信息检索中,预测排序列表中顶部排序非常重要.但是,排序学习中一类经典的排序算法——列表排序算法——无法强调预测排序列表中顶部排序.为了解决此问题,将代价敏感学习的思想融入到列表排序算法中,提出代价敏感的列表排序算法框架.该框架是在列表排序算法的损失函数中对文档引入权重,且基于性能评价指标NDCG计算文档的权重.在此基础之上,进一步证明了代价敏感的列表排序算法的损失函数是NDCG损失的上界.为了验证代价敏感的列表排序算法的有效性,在此框架下提出了一种代价敏感的ListMLE排序算法,并对该算法开展序保持与泛化性的理论研究工作,从理论上验证了该算法具有序保持特性.在基准数据集上的实验结果表明,在预测排序列表中顶部排序中,代价敏感的ListMLE比传统排序学习算法能取得更好的性能. Learning to rank is a popular research area in machine learning and information retrieval (IR). In IR, the ranking order on the top of the ranked list is very important. However, listwise approach, a kind of classical approach in learning to rank, cannot emphasize the ranking order on the top of the ranked list. To solve the problem, the idea of cost-sensitive learning is brought into the listwise approach, and a framework for cost-sensitive listwise approach is established. The framework imposes weights for the documents in the listwise loss functions. The weights are computed based on evaluation measure. Normalized Discounted Cumulative Gain (NDCG). It is proven that the losses of cost-sensitive listwise approaches are the upper bound of the NDCG loss. As an example, a cost- sensitive ListMLE method is proposed. Moreover, the theoretical analysis is conducted on the order preservation and generalization of cost-sensitive ListMLE. It is proven that the loss function of cost- sensitive ListMLE is order preserved. Experimental results on the benchmark datasets indicate that the cost-sensitive ListMLE achieves higher ranking performance than the baselines on the top of the ranked list.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1738-1746,共9页 Journal of Computer Research and Development
基金 高等学校博士学科点专项科研基金项目(20100031110096) 中央高校基本科研业务费专项基金项目(65010571) 国家自然科学基金项目(61105049)
关键词 排序学习 列表排序算法 代价敏感 序保持 泛化性 learning to rank listwise approach cost-sensitive order preservation generalization
  • 相关文献

参考文献19

  • 1Cao Yunho, Xu Jun, Liu Tieyan, et al. Adapting ranking SVM to document retrieval I-C] //Proe of ACM SIGIR2006. New York: ACM, 2006:186-193.
  • 2Joachims T. Optimizing search engines using click-through data I-C] ]/Proe of ACM SIGKDD2003. New York: ACM, 2002:133-142.
  • 3Crammer K, Singer Y. PRanking with ranking EC//Proe of NIPS2001. Cambridge: MIT, 2001:641-647.
  • 4Shashua A, Levin A. Ranking with large margin principle: Two approaches EC /Proc of NIPS2003. Cambridge: MIT, 2003:937-944.
  • 5Freund Y, Iyer R, Schapire R, et al. An efficient boosting algorithm for combining preferences [J]. Journal of Machine Learning Research, 2003, 4 933-969.
  • 6Cao Zheng, Qin Tao, Liu Tieyan, et al. Learning to rank: From pairwise approach to listwisc approach [C] ]/Proc of ICML. New York ACM, 2007 129-136.
  • 7Qin Tao, Zhang Xudong, Tsai Mingfeng, et al. Query-level loss functions for information retrieval [J]. Journal of Information Processing and Management, 2008, 44 (2) 838- 855.
  • 8Xia Fen, Liu Tieyan, Wang Jue, et al. Listwise approach to learning to rank-theory and algorithm I-C] //Proe of ICML2008. New York.. ACM, 2008:1192-1199.
  • 9Jansen B. The effect of query complexity on web searching results [J]. Journal of Information Research, 2000, 6 (1) : 100-108.
  • 10Jansen B, Spink A. An analysis of web documents retrieved and viewed EC //Proc of IC2003. Las Vegas: CSREA, 2003 .. 64-69.

同被引文献41

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部