期刊文献+

分类回归树多吸引子细胞自动机分类方法及过拟合研究 被引量:4

Multiple Attractor Cellular Automata Classification Method and Over-Fitting Problem with CART
下载PDF
导出
摘要 基于多吸引子细胞自动机的分类方法多是二分类算法,难以克服过度拟合问题,在生成多吸引子细胞自动机时如何有效地处理多分类及过度拟合问题还缺乏可行的方法.从细胞空间角度对模式空间进行分割是一种均匀分割,难以适应空间非均匀分割的需要.将CART算法同多吸引子细胞自动机相结合构造树型结构的分类器,以解决空间的非均匀分割及过度拟合问题,并基于粒子群优化方法提出树节点的最优多吸引子细胞自动机特征矩阵的构造方法.基于该方法构造的多吸引子细胞自动机分类器能够以较少的伪穷举域比特数获得好的分类性能,减少了分类器中的空盆数量,在保证分类正确率的同时改善了过拟合问题,缩短了分类时间.实验分析证明了所提出方法的可行性和有效性. The classification methods based on multiple attractor cellular automata can process the classification of two classes, and they are difficult to overcome overfitting problem. There are not yet effective methods for constructing a multiple attractor cellular automata which can process multi- classification and overfitting problem. The pattern space partition in the view of cell space is a kind of uniform partition which is difficult to adapt to the needs of spatial non-uniform partition. By combining the CART algorithm with the multiple attractor cellular automata, a kind of classifier with tree structure is constructed to solve the non-uniform partition problem and overfitting problem. The multiple attractor cellular automata characteristic matrix is defined, and the learning method of classifiers as a node in a tree is studied based on particle swarm optimization algorithm. The multiple attractor cellular automata classifiers built on this approach are able to obtain good classification performance by using less number of bits of pseudo-exhaustive field. The classifier with tree frame of multiple attractor cellular automata reduces the number of empty basin and restrains overfitting problem without lost accurate rate, and shorts the classification time. The feasibility and the effectiveness of the proposed method have been verified by experiments.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1747-1752,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61070143) 陕西省科学技术攻关项目(2011K09-28)
关键词 多吸引子细胞自动机 模式分类 粒子群优化 CART算法 过拟合 multiple attractor cellular automata pattern classification particle swarm optimization CART algorithm overfitting
  • 相关文献

参考文献18

  • 1Maji P. Special issue on cellular automata: Theory and application in artificial intelligence [J]. Fundamenta Informaticae, 2008, 87(2) : 1-2.
  • 2Maji P. Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data [-J]. IEEE Trans on System, Man and Cybernetics, Part B, 2010, 41 (2) .. 1-12.
  • 3Maji P. Chaudhuri P P. RBFFCA; A hybrid pattern classifier using radial basis function and fuzzy cellular automata [-J]. Fundamenta Informaticae, 2007, 78(3) 369- 397.
  • 4Maji P, Shaw C, Ganguly N, et al. Theory and application of cellular automata for pattern classification [J. Fundamenta Informaticae, 2003, 58(3/4): 321-354.
  • 5Maji P, Sikdar B K, Chaudhuri P P. Cellular automata: Cellular automata evolution for pattern classification [G /[ LNCS 3305: Fundamenta Informatieae. Berlin Springer, 2004:660-669.
  • 6Leon O, Chua Yang L. Cellular neural networks theory [J. IEEE Trans on Circuits and Systems, 1988, 35(10): 1257- 1272.
  • 7Tzionas P, Tsalides P, Thanailakis A. Design and VLSI implementation of a pattern classifier using pseudo 2D cellular automata I-J3. Circuits, Devices and Systems, IEE Proceedings G, 1992, 139(6) : 661-668.
  • 8Tzionas P G, Tsalides P G, Thanailakis A. A new cellular automaton-based nearest neighbor pattern classifier and its VLSI implementation EJ]. IEEE Trans on Very Large Scale Integration (VLSI) Systems, 1994, 2(3): 343-353.
  • 9Chattopadhyay S, Adhikari S, Sengupta S, et al. Highly regular modular and cascadable design of cellular automata- based pattern classifier [J]. IEEE Trans on Very Large Scale Integration (VLSI) Systems, 2000, 8(6) 724-735.
  • 10Ganguly N, Das A, Maji P, et al. HiPC: Evolving cellular automata based associative memory for pattern recognition [-C] //Proc of the 8th Int Conf on High Performance Computing. Berlin: Springer, 2001:115-124.

同被引文献58

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部