期刊文献+

一种改进的SIR粒子滤波方法

Improved SIR Particle Filtering
下载PDF
导出
摘要 SIR粒子滤波算法在重采样无法进行时可能失效,详细分析了算法失效的原因,并针对此问题提出了基于PSO的改进方法,该方法利用PSO的智能寻优机制引导重要性抽样的粒子移向高似然区,从而确保重采样过程的顺利进行。仿真试验表明,提出的改进方法可以有效解决SIR算法因重采样无法进行而导致的失效问题。 sampling importance resamp process becomes invalid. The failure reason ling (SIR) particle filtering may fail when the resampling of SIR algorithm is firstly analyzed, and then an improved method is proposed to solve it. The improved method adopts partide swarm optimization(PSO) algorithm to guide particles to move into a higher likelihood location to ensure that the resample process could run well. Simulation results show that the proposed method can work well to solve the filtering failure problem in the case aforementioned.
作者 王锟 王洁
出处 《现代防御技术》 北大核心 2012年第4期155-161,共7页 Modern Defence Technology
关键词 粒子滤波 重采样 滤波失效 粒子群优化 partical filtering resampling filtering failure particle swarm optimization (PSO)
  • 相关文献

参考文献12

  • 1GORDON N J,SALMOND D J, SMITH A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Es- timation[J]. IEE Proc Inst Elect Eng F, 1993, 140 (2) :107-113.
  • 2RONGHUA L, BINGRONG H. Coevolution Based A- daptive Monte Carlo Localization [ J ]. Int J of Advanced Robotic Systems, 2004, 1(3): 183-190.
  • 3叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 4张琪,王鑫,胡昌华,蔡曦.人工免疫粒子滤波算法的研究[J].控制与决策,2008,23(3):293-296. 被引量:20
  • 5胡振涛,潘泉,梁彦,杨峰.基于进化采样的粒子滤波算法[J].控制理论与应用,2009,26(3):269-273. 被引量:16
  • 6程水英,张剑云.裂变自举粒子滤波[J].电子学报,2008,36(3):500-504. 被引量:50
  • 7ARULAMPALAM M S, MASKELL S, GORDON N, et al. A Tutorial on Particle Filters for Online Nonlinear/ Non-Gaussian Bayesian Tracking[ J l. IEEE Trans Sig- nal Processing, 2002,50 ( 2 ) : 174 - 188.
  • 8DOUCET A. On Sequential Simulation-Based Methods for Bayesian Filtering[ R]. CUED F-INFENG TR. 310, 1998.
  • 9BERGMAN N, Recursive Bayesian Estimation: Naviga- tion and Tracking Applications [ D ]. Link~ping, Swe- den: Ph.D. Dissertation, Link~ping Univ. , 1999.
  • 10LIU J S,CHEN R. Sequential Monte Carlo Methods for Dynamical Systems [J]. J. Amer. Statist. Assoc., 1998,93 : 1032 -1044.

二级参考文献41

  • 1李茂军,罗安,童调生.人工免疫算法及其应用研究[J].控制理论与应用,2004,21(2):153-157. 被引量:43
  • 2莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 3莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 4胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 5杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 6GORDON N J, SALMOND D J, SMITH A F M. Novel approach to non-linear/non-Gaussian bayesian state estimation[J]. IEEE Proceedings on Radar, Sonar and Navigation, 1993, 140(2): 107 - 113.
  • 7CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 736 - 746.
  • 8DOUCET A, GORDON N J. Sequential Monte Carol Methods in Practice[M]. New York: Springer-Verlag, 2001:247 - 272.
  • 9MERWE R V, DOUCET A, FRE1TAS N DE, et al. The unscented particle filter[R]//Technical Report of the Cambridge University Engineering Department CUED/F INFENG/TR, 380. England: Cambridge University Press, 2001:1 - 45.
  • 10RONGHUA L, BINGRONG H. Coevolution based adaptive Monte Carlo localization[J]. International Journal of Advanced Robotic Systems, 2004, 1(3): 183 - 190.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部