期刊文献+

利用混沌PSO或分解的2维Tsallis灰度熵阈值分割 被引量:17

Two-dimensional Tsallis gray entropy image thresholding using chaotic particle swarm optimization or decomposition
原文传递
导出
摘要 现有最大Shannon熵或Tsallis熵阈值选取方法没有从类内灰度均匀性出发,而仅依据图像灰度直方图,并且Tsallis熵法的分割效果通常优于Shannon熵法。为此,提出了基于混沌粒子群优化(PSO)和基于分解的两种2维Tsallis灰度熵阈值分割方法。首先,给出了1维Tsallis灰度熵阈值选取方法并将其推广到2维,导出了相应的2维Tsallis灰度熵阈值选取公式及其递推算法;其次,利用混沌PSO算法搜寻2维Tsallis灰度熵法的最佳阈值,并采用递推方式去除迭代过程中适应度函数的冗余运算,大大提高了运行速度;最后,将2维Tsallis灰度熵阈值选取方法的运算转化为两个1维Tsallis灰度熵法的运算,计算复杂度从O(L2)进一步降低到O(L)。实验结果表明,与2维最大Shannon熵法、2维最大Tsallis熵法及2维Tsallis交叉熵法相比,所提出的两种方法可以大幅提高图像分割质量和算法运行速度。 The method of threshold selection based on two-dimensional maximal Shannon or Tsallis entropy only depends on the probability information from gray histogram of an image, and does not immediately consider the uniformity of within- cluster gray scale. The segmentation effect of the Tsallis entropy method is superior to that of the Shannon entropy method. Thus, a two-dimensional Tsallis gray entropy thresholding method based on chaotic particle swarm optimization (PSO) or decomposition is proposed. First, a one-dimensional thresholding method based on Tsallis gray entropy is given and extend- ed to the two-dimensional case. The corresponding formulae and its recursive algorithm for threshold selection based on the two-dimensional Tsallis gray entropy are derived. Then a chaotic particle swarm optimization algorithm is used to find the optimal threshold of the two-dimensional Tsallis gray entropy method. The reeursive algorithm is adopted to avoid the repeti-tive computation of the fitness function in an iterative procedure. As a result, the computing speed is improved greatly.Finally, the computations of threshold selection method based on two-dimensional Tsallis gray entropy are converted into two one-dimensional spaces, which further reduces the computational complexity from O (L^2) to O (L). The experimental re- suits show that, compared with the two-dimensional maximal Shannon entropy method, the two-dimensional maximal Tsallis entropy method and the two-dimensional Tsallis cross entropy method, the two methods proposed in this paper can signifi- cantly improve image segmentation performance and algorithmic running speed.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第8期902-910,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(60872065) 光电控制技术重点实验室与航空科学基金联合资助项目(20105152026) 南京大学计算机软件新技术国家重点实验室开放基金项目(KFKT2010B17)
关键词 图像分割 阈值选取 2维Tsallis灰度熵 混沌粒子群优化 分解 递推算法 image segmentation threshold selection two-dimensional Tsallis gray entropy chaotic particle swarm optimi-zation decomposition recursive algorithm
  • 相关文献

参考文献18

  • 1Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[ J]. Journal of Electronic Imaging, 2004, 13(1) : 145-165.
  • 2Bardera A, Boada I, Feixas M, et al. Image segmentation using excess entropy[ J]. Journal of Signal Processing Systems, 2009, 54(1-3) : 205-214.
  • 3Wang S T, Chung F L, Xiong F S. A novel image thresholding method based on Parzen window estimate [ J ]. Pattern Recognition, 2008, 41 ( 1 ) : 117-129.
  • 4Davies E R. Stable bi-level and multi-level thresholding of images using a new global transformation [ J]. IET Computer Vision, 2008, 2(2) : 60-74.
  • 5Hammouche K, Diaf M, Siarry P. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation [ J]. Computer Vision and Image Understanding, 2008, 109(2): 163-175.
  • 6Kapur J N, Sahoo P K, Wong A K C. A new method for greylevel picture thresholding using the entropy of the histogram[ J]. Computer Vision, Graphics and Image Processing, 1985, 29(3) : 273-285.
  • 7Abutaleb A S. Automatic thresholding of ga'ay-level picture using two-dimensional entropies [ J ]. Pattern Recognition, 1989, 47 ( 1 ) :22-32.
  • 8Brink A D. Thresholding of digital image using two-dimensional entropies [ J ]. Pattern Recognition, 1992, 25 ( 8 ) : 803-808.
  • 9刘健庄.基于二维熵的图象阈值选择快速算法[J].模式识别与人工智能,1991,4(3):46-53. 被引量:7
  • 10Chen W T, Wen C H, Yang C W. A fast two-dimensional entropic thresholding algorithm [ J ]. Pattern Recognition, 1994, 27 ( 7 ) : 885-893.

二级参考文献44

共引文献239

同被引文献193

引证文献17

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部