摘要
现有最大Shannon熵或Tsallis熵阈值选取方法没有从类内灰度均匀性出发,而仅依据图像灰度直方图,并且Tsallis熵法的分割效果通常优于Shannon熵法。为此,提出了基于混沌粒子群优化(PSO)和基于分解的两种2维Tsallis灰度熵阈值分割方法。首先,给出了1维Tsallis灰度熵阈值选取方法并将其推广到2维,导出了相应的2维Tsallis灰度熵阈值选取公式及其递推算法;其次,利用混沌PSO算法搜寻2维Tsallis灰度熵法的最佳阈值,并采用递推方式去除迭代过程中适应度函数的冗余运算,大大提高了运行速度;最后,将2维Tsallis灰度熵阈值选取方法的运算转化为两个1维Tsallis灰度熵法的运算,计算复杂度从O(L2)进一步降低到O(L)。实验结果表明,与2维最大Shannon熵法、2维最大Tsallis熵法及2维Tsallis交叉熵法相比,所提出的两种方法可以大幅提高图像分割质量和算法运行速度。
The method of threshold selection based on two-dimensional maximal Shannon or Tsallis entropy only depends on the probability information from gray histogram of an image, and does not immediately consider the uniformity of within- cluster gray scale. The segmentation effect of the Tsallis entropy method is superior to that of the Shannon entropy method. Thus, a two-dimensional Tsallis gray entropy thresholding method based on chaotic particle swarm optimization (PSO) or decomposition is proposed. First, a one-dimensional thresholding method based on Tsallis gray entropy is given and extend- ed to the two-dimensional case. The corresponding formulae and its recursive algorithm for threshold selection based on the two-dimensional Tsallis gray entropy are derived. Then a chaotic particle swarm optimization algorithm is used to find the optimal threshold of the two-dimensional Tsallis gray entropy method. The reeursive algorithm is adopted to avoid the repeti-tive computation of the fitness function in an iterative procedure. As a result, the computing speed is improved greatly.Finally, the computations of threshold selection method based on two-dimensional Tsallis gray entropy are converted into two one-dimensional spaces, which further reduces the computational complexity from O (L^2) to O (L). The experimental re- suits show that, compared with the two-dimensional maximal Shannon entropy method, the two-dimensional maximal Tsallis entropy method and the two-dimensional Tsallis cross entropy method, the two methods proposed in this paper can signifi- cantly improve image segmentation performance and algorithmic running speed.
出处
《中国图象图形学报》
CSCD
北大核心
2012年第8期902-910,共9页
Journal of Image and Graphics
基金
国家自然科学基金项目(60872065)
光电控制技术重点实验室与航空科学基金联合资助项目(20105152026)
南京大学计算机软件新技术国家重点实验室开放基金项目(KFKT2010B17)
关键词
图像分割
阈值选取
2维Tsallis灰度熵
混沌粒子群优化
分解
递推算法
image segmentation
threshold selection
two-dimensional Tsallis gray entropy
chaotic particle swarm optimi-zation
decomposition
recursive algorithm