期刊文献+

有机配体对纳米零价铁还原硝基苯的影响与机理 被引量:2

Influence of various organic ligands on reduction of nitrobenzene by nanoscale zero-valent iron and its mechanism
原文传递
导出
摘要 通过FeSO4·7H2O与NaBH4反应,采用液相还原法制备纳米级零价铁(NZVI),并用XRD,SEM对其性能进行表征。研究了纳米零价铁还原硝基苯(NB)的动力学规律及柠檬酸、草酸、柠檬酸钠、草酸钠、乙二胺四乙酸二钠(EDTA二钠盐)几种有机小分子对其还原效率的影响,并对其机理进行了初步探讨。结果表明,纳米零价铁去除硝基苯反应符合准一级动力学方程,并且当硝基苯浓度一定时,增加NZVI投加量,去除率会显著增大;当NZVI浓度一定时,硝基苯浓度越低,去除率越高;柠檬酸和EDTA二钠盐在较低浓度时抑制还原反应进行,而在3 mmol/L左右时,具有促进还原反应进行的作用,而草酸、柠檬酸钠和草酸钠则为抑制作用。 Zero-valent iron nanoparticles (NZVI) was synthesized by the reduction of FeSO4 7H20 and NaBH4 in liquid phase, and characterized by XRD, SEM. The removal kinetics and the influence on the removal rate of various organic ligands, including citric acid, oxalic acid, sodium oxalate, sodium citrate and EDTA- 2Na, were investigated in depth, and their influencing mechanisms were preliminarily discussed. The results in- dicated that the kinetic experimental data fitted the pseudo-first-order reaction. The removal rate of NB can be improved by an increase in NZVI concentration when the concentration of NB is constant. The lower the concen- tration of NB, the higher the removal rate of the NB when the concentration of NZVI is constant. The citric acid and EDTA-2Na retarded the removal of NB in low concentration while they accelerated the removal in 3 mmol/L concentration. Sodium citrate, oxalic acid, sodium oxalate retarded the removal rate of nitrobenzene.
出处 《环境工程学报》 CAS CSCD 北大核心 2012年第8期2527-2532,共6页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金资助项目(40773080 41072034) 广东省自然科学基金项目(10151063101000028)
关键词 纳米零价铁 硝基苯 有机配体 zero-valent iron nanoparticles nitrobenzene organic ligand
  • 相关文献

参考文献22

  • 1Keum Y. S. , Qing X. Li. Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere, 21104,54 (3) :255-263.
  • 2MuY. , Yu H. Q. , Zhang, S. J. , et al. Reductive degradation of nitrobenzene in aqueous solution by zero- valent iron. Chemosphere, 2004,54 ( 7 ) :789-794.
  • 3Hasmukh A. P. , Bajaj H. C. , Raksh V. J. Sorption of nitrobenzene from aqueous solution on organoclays in batch and fixed-bed systems. Ind. En-. Chem. Res., 2009,48 (2) :1051-1058.
  • 4Pan J. , Guan B. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylam- monium bromide. Journal of Hazardous Materials, 2010, 183 ( 1-3 ) :341-346.
  • 5Chamarro E. , Marco A. , Esplugas S. Use of Fenton rea- gent to improve organic chemical biodegradability. Water Res. , 2001,35 ( 4 ) : 1047-1051.
  • 6Zhang S. J. , Jiang H. , Li M. J. , et al. Kinetics and mecha- nisms of radiolytic degradation of nitrobenzene in aqueous so- lutions. Environ. Sci. Technol. , 2007,41 (6) :1977-1982.
  • 7Mantha R. , Taylor K. E., Biswas N., et al. A continuous system for Fe- reduction of nitrobenzene in synthetic wastewater. Environ. Sci. Technol. , 2001,35 (15) :3231-3236.
  • 8Jan. D. , Leen B. , Dirk S. , et aI. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron sys- tems. Environ. Sci. Technol., 2004,38(10):2879-2584.
  • 9Feng J. , Lim T. T. Pathways and kinetics of carbon tetra- chloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: Comparison with commercial micro-scale Fe and Zn. Chemosphere, 2005,59 (9) : 1267-1277.
  • 10Zhang X. , Lin Y. ,Chen Z. 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron. Journal of Hazardous Materials, 21109,165 ( 1-3 ) :923-927.

二级参考文献18

  • 1万德立,王勇,白清东.纳米粉体在水性介质中的分散及改性技术[J].国外建材科技,2005,26(1):25-28. 被引量:16
  • 2Lowry G V,Johnson K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent Iron in a water/methanol Solution. Environ Sci Technol, 2004, 38 (19) : 5 208-5 216.
  • 3Engelmann M D, Hutcheson R, Kristy H. Simultaneous determination of total polychlorinated biphenyl and dichlorodiphenyltrichloroethane (DDT) by dechlorination with Fe/Pd and Mg/Pd bimetallic particles and flame ionization detection gas chromatography. Microchemical Journal, 2003, 74: 19-25.
  • 4Gedanken A. Using sonochemistry for the fabrication of nanomaterial ultrasonics. Sonochemistry, 2004, 11:47-55.
  • 5Khomutov G B, Bykov I V, Gainutdinov R V, et al. Two-dimensional photochemical synthesis of plate-like nanoparticles. Physicochemical and Engineering Aspects, 2002, 198-200:347-358.
  • 6Liu J B, Dong W, Zhan P. Synthesis of bimetallic nanoshells by an improved electroless plating method. Langmuir, 2005, 21:1 683-1 686.
  • 7Grirrane A, Pastor A, Mealli C. Synthesis, structure, magnetic and electrochemical properties of an oxydiacetate iron (Ⅱ) complex. Norganica Chimica Acta, 2004, 57:4 215-4 219.
  • 8Cheng W H, Wu K C, Lo M Y. Recent advances in nano precious metal catalyst research at Union Chemical Laboratories. Catalysis Today, 2004, 97:145-151.
  • 9Sung H J, Andrew J, Feitz A, etal, Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent Iron. Environmental Science and Technology. 2004, 38, 2 242 -2 247.
  • 10Lien H L, Zhang W X. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001,191 : 97 -105.

共引文献22

同被引文献15

  • 1Shu H. Y. ,ChangM. C. ,Yu H. H. , et al. Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles. Journal of Colloid and Interface Science,2007,314( 1 ) :89-97.
  • 2Lin Y. T. ,Weng C. H. ,Chen F. Y. Effective removal of AB24 dye by nano/micro-size zero-valent iron. Separation and Purification Technology ,2008,64 ( 1 ) :26-30.
  • 3Chen Z. X. ,Jin X. Y. ,Chen Z. L. ,et al. Removal of meth- yl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science ,2011,363 ( 2 ) :601-607.
  • 4Satapanajaru T. , Chompuchan C. , Suntornchot P. et al. Enhancing decolorization of Reactive Black 5 and Reactive Red 198 during nano zerovalent iron treatment. Desalina- tion,2011,266( 1-3 ) :218-230.
  • 5Chen Z. X. ,Chen Y. ,Chen Z. L. , et al. Synthesis, reactiv- ity and characterization of kaolin-supported nanoscale zero- valent iron for removing cationic dye-crystal violet in aque- ous solution. Journal of Nanoparticle Research, 2012, 14 (7) :899-915.
  • 6O'Carroll D.,Sleep B.,Krol M.,et al. Nanoscale zero valent iron and bimetallic particles for contaminated site re- mediation. Advances in Water Resources,2013,51:104-122.
  • 7Hwang Y. H. ,Kim D. G. ,Shin H.S. Mechanism study of nitrate reduction by nano zero valent iron. Journal of Haz- ardous Materials ,2011,185 ( 2-3 ) : 1513-1521.
  • 8Fan J. ,Guo Y. H. ,Wang J. J. , et al. Rapid decoloriza- tion of azo dye methyl orange in aqueous solution by nanoscale zero valent iron particles. Journal of Hazardous Materials ,2009,166( 2-3 ) :904-910.
  • 9Shi L. N. , Zhang X. , Chen Z.L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research,2011,45 (2) :886-892.
  • 10Gylien60. ,Vengris T. ,Stoncius A. ,et al. Decontamina- tion of solutions containing EDTA using metallic iron. Journal of Hazardous Materials, 2008,159 ( 2-3 ) :446-451.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部