摘要
主要研究了多噪声源共同作用下的混合噪声烦恼度的评价过程与预测方法.首先,设计并完成了固定播放时长噪声样本作用下的烦恼度主观评价实验,获得了人工合成的混合噪声样本作用下的混合噪声烦恼度(亦称总烦恼度)α_T评价数据与构成混合噪声样本的所有单一噪声样本单独作用时的烦恼度α_i(i=1,2,3,…,K;K为混合噪声样本中单一噪声样本的总数)评价数据.随后,细致分析了两组评价数据之间的关系,提出在已知α_i的基础上利用多元线性回归模型预测α_T.最后,解决了如何确定模型中对应各α_i的权值w_i(i=1,2,3,…,K)的问题.研究表明,以所提出的权值确定方法建立的多元线性回归预测模型能够较为成功地预测混合噪声样本作用下的总烦恼度评价值.
In this paper, noise annoyance from a mixture of multiple single sources is studied with emphasis on subjective evaluation and objective prediction. From 10 subjects, annoyance values for all single and artificially combined noise samples are collected using the semantic differential method with a suitable verbal scale. We propose a novel method to determine the utility weights of a multivariate linear regression model by comparing the total annoyance aT of the combined noise sample to every single annoyance ai from its componential single sound sample. This method predicts aT on the premise of given ai. Our results demonstrate that the multivariate linear regression model and the calculated utility weights provide a good and conceptually simple framework to predict the total noise annoyance.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2012年第16期284-291,共8页
Acta Physica Sinica
基金
西北工业大学基础研究基金(批准号:JC201025)资助的课题~~
关键词
噪声烦恼度
主观评价
预测模型
多元线性回归
noise annoyance, subjective rating, predictive modeling, multivariate linear regression