期刊文献+

Ga掺杂对ZnO纳米结构可见光发射的抑制效应 被引量:2

Suppression of visible light emission of ZnO nanostructures by Ga-doping
原文传递
导出
摘要 采用碳热还原反应和原位掺杂的方法制备了不同Ga掺杂浓度的ZnO纳米结构.X射线衍射显示掺杂纳米结构中为单一的氧化锌纤锌矿结构.扫描电子显微镜观测发现随掺杂浓度的增大,纳米结构的形貌逐渐从纳米六棱柱变为纳米锥.光致发光和X射线光电子能谱测量分别发现随着掺杂浓度升高,纳米结构的可见发光强度和其中空位氧峰相对强度逐渐减小直至消失,两者存在很强的相关性.上述结果为ZnO可见光发射的氧空位机理提供了新的实验证据.对Ga掺杂抑制纳米结构中氧空位的原因进行了分析. Ga-doped ZnO nanostructures with various doping concentrations are prepared by using carbon thermal reduction reaction and in situ doping method. X-ray diffraction measurement reveals only wurzite structures existing in Ga-doped ZnO nanostructures. Scaning electron microscopy observations show that with the increase of Ga doping concentration, the morphology of ZnO nanstrucuture varies gradually from nanorods to nanocones. From the photoluminescence, we find that the visible light emission of ZnO nanostructures can be suppressed obviously and even disappears with the increase of Ga doping concentration. Moreover, the suppression of visible light emission is correlated well with the behavior, and X-ray photoelectron spectroscopy measurement reveals that the vacancy oxygen in ZnO nanostructure decreases drastically with the increase of Ga doping concentration. This result offers a new strong evidence for the mechanism that the visible light emission ofZnO nanostructures is caused by the oxygen vacancy defects. This work also demonstrates that a little Ga incorporation into ZnO nanostructures can effectively reduce the oxygen vacancy defects occurring.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第16期410-415,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2011CB921403)资助的课题~~
关键词 Ga掺杂 ZNO纳米结构 光致发光 氧空位 Ga doping, ZnO nanostructures, photoluminescence, oxygen vacancy
  • 相关文献

参考文献34

  • 1Ahsanulhaq Q, Umar A, Hahn Y B 2007 Nanotechnology 18 115603.
  • 2Shen G Z, Chen P C, Ryu K M, Zhou C W 2009 J. Mater. Chem. 19 828.
  • 3Song J H, Wang X D, Riedo E, Wang Z L 2005 J. Phys. Chem. B 109 9869.
  • 4Umar A, Karunagaran B, Suh E K, Hahn Y B 2006 Nanotechnol- ogy 17 4072.
  • 5Liu J Z, Ahn Y H, Park J Y, Koh K H, Lee S 2009 Nanotechnology 20 5203.
  • 6Djurii6 A B, Ng A M C, Chen X Y 2010 Prog. Quant. Electron. 34 191.
  • 7Djudgi6 A B, Leung Y H 2006 Small 2 944.
  • 8Zhang G B, Shi C S, Hart Z E Shi J Y, Fu Z X, Kirm M, Zimmerer G 2001 Chin. Phys. Lett. 18 441.
  • 9Dai L, Chen X L, Wang W J, Zhou T, Hu B Q 2003 J. Phys. Con- dens. Matter 15 2221 1671.
  • 10Qiu J, Li X, He W, Park S J, Kim H K, Hwang Y H, Lee J H, Kim Y D 2009 Nanotechnology 20 155603.

同被引文献50

  • 1侯清玉,董红英,马文,赵春旺.2013.物理学报,62,157101.
  • 2Xiao S Q, Wang H, Zhao Z C, Gu Y Z, Xia Y X. The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures [ J ]. Opt. Express, 2008, 16(6): 3798.
  • 3Du L. , Wang H.. Infrared laser induced lateral photo- voltaic effect observed in Cu2O nanoscale film [ J ]. Op- tics Express, 2010, 18(9) : 9113.
  • 4Jeong I S, Kim J H, Im S. Ultraviolet-enhanced photo- diode employing n-ZnO/p-Si structure [ J ]. Appl. Phys. Lett. , 2003, 83(14): 2946.
  • 5Yu C Q, Wang H, Xia Y X. Giant lateral photovohaic effect observed in Ti02 dusted metal-semiconductor struc- ture of Ti/TiO2/Si [ J ]. Appl. Phys. Lett. , 2009, 95 (14) : 3506.
  • 6Xu J Q, Pan Q Y, Shun Y A, Tian Z Z. Grain size control and gas sensing properties of ZnO gas sensor [J]. Sens. Actuators B Chem. , 2000, 66(1-3): 277.
  • 7Van de Walle C G. Hydrogen as a cause of doping in zinc oxide [J]. Phys. Rev. Lett., 2000, 85(5): 1012.
  • 8Chtm B S, Wu H C, Abid M. The effect of deposition power on the electrical properties of M-doped zinc oxide thin films [J]. Appl. Phys. Lett., 2010, 97(8) : 082109.
  • 9Lu J, Wang H. Large lateral photovoltaic effect ob- served in nano Al-doped ZnO films [ J ]. Optics Ex- press, 2011, 19(15) : 13806.
  • 10Jin K J, Zhao H B, Lu H B, Liao L. Dember effect induced photovoltage in perovskite p-n Heterojunctions [J]. Appl. Phys. Lett., 2007, 91(8): 081906.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部