期刊文献+

开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究

Linear analysis of open-style dielectric-lined azimuthally periodic circular waveguide
原文传递
导出
摘要 提出了一种可应用于毫米波功率放大器中的新型慢波结构——开敞型角向周期加载金属柱圆波导结构,并且在互作用通道内,引入了薄环形电子注,推导出了此时的"热"色散方程,并且对基于该新型慢波结构的行波管的小信号增益特性进行了深入探讨.通过数值方法研究了金属柱尺寸和电子注参数对器件线性特性的影响.结果表明:通过对金属柱尺寸的适当设计,可以获得更高的增益值.与封闭型结构的比较结果表明,开敞型角向周期加载金属柱圆波导结构能够有效地提高小信号增益,并且对带宽的影响不大.研究结果为研制基于此新型慢波系统的毫米波行波管奠定了理论基础. A novel slow-wave structure, i.e., an open-style dielectric-lined azimuthally periodic circular waveguide (open-style DLAP-CW) which can be applied to millimeter wave traveling-wave tube, is proposed. The hot dispersion characteristics are derived by the self- consistent relativistic field theory. And the electron beam interaction in the novel slow-wave structure (SWS) is analyzed in a linear frame. The linear gain characteristics of the DLAP-CW is studied analytically for dimensions of the improved SWS and the parameters of the electron beam. The results illustrate that selecting the appropriate dimensions of the metal rods can improve the small-signal gain. Finally, a comparison of the small-signal gain of this structure with a close-style DLAP-CW is made, and the results validate that the novel SWS has an advantage over the close-style DLAP-CW in gain with little influence on the bandwidth, which can potentially improve electron efficiency in the beam wave interaction. The research in this paper will also be a foundation of the theory for open-style dielectric-lined azimuthally periodic circular waveguide traveling-wave tube.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第16期488-495,共8页 Acta Physica Sinica
基金 国家杰出青年科学基金(批准号:61125103) 国家自然科学基金(批准号:60971038) 中央高校基本科研业务费(批准号:ZYGX20092003)资助的课题~~
关键词 开敞型角向周期加载金属柱圆波导 热色散方程 小信号增益 行波管 open-style dielectric-lined azimuthally periodic circular waveguide, hot dispersion characteristics,small-signal gain, traveling-wave tube
  • 相关文献

参考文献16

  • 1Feng J J, Hu Y E Cai J, Wu X E Tang Y 2010 Vacuum Electronics 2 27 (in Chinese).
  • 2Chong C K, Davis J A 2005 IEEE Trans. Electron Dev. 52 2.
  • 3Qu B, Feng J J 2010 Vacuum Electronics 2 16 (in Chinese).
  • 4Ding Y G, Liu P K, Zhang Z C, Wang Y 2011 Proceedings of IEEE International Vacuum Electronics Conference Bangalore, In- dia, February 21-24, 2011 p525 Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese).
  • 5Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese).
  • 6Hu Y L, Yang Z H, Li B, Li J Q, Huang T, Jin X L, Zhu X F, Liang X P 2010Acta Phys. Sin. 59 5439 (in Chinese).
  • 7Vancil B K 2004 Proceedings of the 5th International Vacuum Electron Sources Conference Beijing, China, September 6-10, 2004 p23.
  • 8Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta Phys. Sin. 58 3118 (in Chinese).
  • 9Gong Y B, Wei Y Y, Huang M Z 2008 Global Symposium on Mil- limeter Waves Naaiing, China, April 21-24, 2008 pp337-339.
  • 10He J, Wei Y Y, Gong Y B, Duan Z Y, Wang W X 2010Acta Phys. Sin. 59 2843 (in Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部