期刊文献+

金属-绝缘体-金属结构的表面等离激元受激放大辐射放大器的研制 被引量:1

Manufacture of SPASER Amplifier with Metal-Insulator-Metal Structure
原文传递
导出
摘要 为了研究用于表面等离子(SP)波的可集成表面等离激元受激放大辐射(SPASER)放大器,设计了植入饱和吸收体的金属-绝缘体-金属(MIM)结构放大器的基本组成。根据SPASER的基本原理,对激射条件进行了分析,给出了放大器的制作工艺和抽运脉冲的设计以及性能指标。结果表明研制的放大器在选择566nm波长的入射光和532nm波长的抽运光,放大区采用长度范围为1~1.5μm的条件下,其脉冲响应时间可达100fs,带宽为1.5~2THz,SP的放大增益为30~60dB。该SPASER放大器研究将为大规模集成光子学芯片设计提供理论和技术基础,可在下一代高速通信系统中得到广泛应用。 In order to research the integration surface plasmon amplification by stimulated emission of radiation (SPASER) amplifier for surface plasmon (SP) amplification, the basic components of amplifier which includes metal- insulator-metal (MIM) structure embeded by the saturation absorber are designed and discussed. According to the basic principle of SPASER, stimulated emission conditions are analyzed. Meanwhile, the fabrication process of amplifier and pump pulse are designed, and the performance index is given. The results show that under the conditions of the incident light wavelength of 566 nm, pump light wavelength of 532 nm and the length of amplification region of 1~1.5 tLm, the pulse response time can reach 100 fs, the bandwidth of 1.5~2 THz and gain of SP-ranges from 30 to 60. SPASER amplifier research will provide theoretical and technology foundation for large- scale integrated photonic chip, which will be widely used for high-speed communications system in next generation.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第8期183-188,共6页 Acta Optica Sinica
基金 国家自然科学基金(60877047) 河北省自然科学基金(F20100002002) 国家留学人员科技活动项目择优资助经费(20070216004)资助课题
关键词 非线性光学 量子光学 表面等离子激元 金属-绝缘体-金属波导 弛豫振荡 nonlinear optics quantum optics surface plasmon polaritons metal-insulator-metal waveguide relaxation oscillation
  • 相关文献

参考文献19

  • 1R. H. Ritchie. Plasma losses by fast electrons in thin films[J]. Phys. Rev., 1957, 106(5): 874-881.
  • 2C. J. Powell, J. B. Swan. Origin of the characteristic electron energy losses in aluminum[J].Phys. Rev. , 1959, 115(4): 869 -875.
  • 3Xiangfeng Duan, Yu Huang, Ritesh Agarwal et al.. Single- nanowire electrically driven lasers [J]. Nature, 2003, 421 (3) 241-245.
  • 4Diederik S. Wiersma, Mikhail A. Noginov. Nano and random lasers[J]. J. Opt. , 2010, 12(2): 020201.
  • 5David J. Bergman, Mark 1. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystem[J]. Phys. Rev. Lett. , 2003, 90(2): 027402.
  • 6Mark I. Stockman. The spaser as a nanoscale quantum generator and ultrafast amplifier[J].J. Opt., 2010, 12(2): 024004.
  • 7Robert F. Service. Smallest of the Small? [J]. Science, 2010, 328(5980) : 811-812.
  • 8M. A. Noginov, G. Zhu, A. M. Belgrave et al.. Demon strationof a spaser-based nanolaser[J]. Nature, 2009, 460(11): 1110-1112.
  • 9Mark L. Brongersma, Vladimir M. Shalaev. The case for plasmonics[J]. Science, 2010, 328(5977):440-441.
  • 10Zheyu Fang, Qian Peng, Wentao Song et al.. Plasmonic focusing in symmetry broken nanocorrals[J]. Nano Lett. , 2011, 11 (2) 893-897.

二级参考文献20

  • 1张天浩,尹美荣,方哲宇,杨海东,杨嘉,路彦珍,杨会战,康慧珍,杨大鹏.表面等离子体共振技术的一些新应用[J].物理,2005,34(12):909-914. 被引量:9
  • 2W.L.Barnes,A.Dereux,T.W.Ebbesen.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830.
  • 3E.Ozbay.Plasmonics:merging photonics and electronics at nanoscale dimensions[J].Science,2006,311(5758):189-193.
  • 4S.I.Bozhevolnyi,V.S.Volkov,E.Devaux et al..Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].Nature,2006,440(7083):508-511.
  • 5S.A.Maier.Plasmonics:the promise of highly integrated optical devices[J].IEEE J.Sel.Topics Quant.Electron.,2006,12(6):1671-1677.
  • 6Wenrui Xue,Yanan Guo,Peng Li et al..Propagation properties of a surface plasmonic waveguide with double elliptical air cores[J].Opt.Express,2008,16(14):10710-10720.
  • 7Z.Zhu,T.G.Brown.Full-vectorial finite-difference analysis of microstructured optical fibers[J].Opt.Express,2002,10(17):853-864.
  • 8S.Guo,F.Wu,S.Albin.Loss and dispersion analysis of microstructured optical fibers by finite-difference method[J].Opt.Express,2004,12(15):3341-3352.
  • 9C.Yu,H.C.Chang.Yee-mesh-based finite difference eigenmode solver with PML absorbing boundaray conditions for optical waveguides and photonic craystal fibers[J].Opt.Express,2004,12(25):6165-6177.
  • 10S.D.Gedney.An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices[J].IEEE Trans.Antennas and Propagation,1996,44(12):1630-1639.

共引文献18

同被引文献21

  • 1T W Ebbesen, H J Lezec, H F Ghaemi, et al: Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.
  • 2W-C Tan, T W Preist, R J Sambles. Resonant tunneling of light through thin metal films via strongly localized surface plasmons [J]. Phys RevB, 2000, 62(16): 11134-11138.
  • 3Z Sun, X Zuo. Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings [J]. Plasmonics, 2011, 6(1): 83-89.
  • 4S A Darmanyan, A V Zayats. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study [J]. Phys Rev B, 2003, 67(3) : 035424.
  • 5Y CLan. Optical tunneling effect of localized surface plasmon: a simulation study using particle-in-cell method [J]. Appl Phys Lett, 2006, 88(7): 071109.
  • 6I Avrutsky, Y Zhao, V Kochergin. Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film [J]. Opt Lett, 2000, 25(9): 595-597.
  • 7N Bonod, S Enoch, L Li, et al: Resonant optical transmission through thin metallic films with and without holes [J]. Opt Express, 2003, 11(5): 482-490.
  • 8B F Bai, L F Li, L J Zeng. Experimental verification of enhanced transmission through two dimensionally corrugated metallic films without holes[J]. Opt Lett, 2005, 30(18): 2360-2362.
  • 9S A Maier, H A Atwater. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures[J]. J Appl Phys, 2005, 98(1): 011101.
  • 10F Wang, Y R Shen. General properties of local plasmons in metal nanostructures [J]. Phys Rev Lett, 2006, 97(20) 206806.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部