期刊文献+

两种广义双曲奇异值分解及应用

Two Generalized Hyperbolic SVDs and Their Applications
下载PDF
导出
摘要 我们主要用双曲奇异值分解并参考文献[8]给出了两矩阵乘积的广义双曲奇异值分解定理及双曲相关标准分解定理,并用它们来计算了两种情况下的矩阵乘积的广义逆. In this paper, hyperbolic singular values decompositions of products of two matrices ( P - HS- VD) and hyperbolic correlative criterion decompersitions(HCCD) were obtain using hyperbolic singular values decomposition. Furthermore, the generalized inverses of product -matrices (AB) {1} , (AB) {2} and (AB) { 1, 2} were determined using P- HSVD and HCCD.
出处 《佳木斯大学学报(自然科学版)》 CAS 2012年第4期607-609,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 广义逆 J-正交矩阵 奇异值分解 双曲奇异值分解 P-HSVD HCCD generalized inverse J - orthogonal matrix SVD HSVD P - HSVD HCCD
  • 相关文献

参考文献7

  • 1Adam Bojanczyk, Sanzheng Qiao, Allan O. Steinnhardt, Unifying Unitary and Hyper - bolic Transformations [ J]. Linear Algebra and Applications 316, (2010), 183 - 187.
  • 2M. Stewart , P. Van Dooren, On the Factorization of Hyperbolic and Unitary Transformations into Rotations [ J ]. manuscript, 2002.
  • 3Nichils J. Higham, J - orthogonal Matrices: Properties and Gener- ation[J]. 2003 ,SLAM review,504 -519.
  • 4Xiao - qing Jin , Yi - min Wei, Numerical Linear Algebra and Its Applications[ M ]. Science Press,2004,pp. 4 - 18.
  • 5Adam W. Bojanczyk, An Implicit Jacobi - like Method for Com- puting Generalized Hyperbolic SVDEJ]. Linear Algebra and Ap- plications 358 (2003), pp. 293 - 307.
  • 6徐树方.矩阵计算的理论与方法[M].北京:北京大学出版社,1992..
  • 7魏木生.广义最小二乘问题的理论与计算[M].北京:科学出版社(2006),6-12.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部