期刊文献+

基于支持向量机的小样本威布尔可靠性分析 被引量:7

Weibull Reliability Analysis in Small Samples Based on SVM
下载PDF
导出
摘要 在传统的威布尔可靠性分析基础上,提出了基于支持向量机的威布尔可靠性分析方法,采用编程的方式绘制了威布尔概率纸,通过程序化的方式分析估计威布尔概率参数,进行可靠性寿命分析,并对比分析了基于支持向量机和传统的威布尔可靠性分析的效果。实例分析结果显示,在威布尔可靠性分析中,支持向量机的拟合精度较好,可作为威布尔可靠性分析的一种新方法,特别适用于小样本的情况。 Based on the traditional method of Weibull reliability analysis, a new Weibull reliability analysis method based on the support vector machine (SVM) is proposed in this paper. The Weibull probability paper is programmed, by which the parameters of Weibull distribution and reliability life analysis are estimated. And the effectiveness of new Weibull reliability analysis based on SVM and the traditional one are compared. The simulation experiment results show that the new method based on SVM can improve the analysis precision and effectiveness. So the reliability analysis based on SVM can be regarded as another choice of Weibull reliability analysis, which is especially suitable for the small samples.
出处 《机械科学与技术》 CSCD 北大核心 2012年第8期1359-1362,1368,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 中央高校基本科研业务费专项资金项目(CHD2012JC048,72105473) 长安大学基础研究支持计划专向基金项目 汽车运输安全保障技术交通行业重点实验室开放基金项目资助
关键词 支持向量机 威布尔分析 可靠性评估 小样本 LSSVM SVM Weibull analysis reliability evaluation small samples
  • 相关文献

参考文献10

  • 1Murthy D N P, Xie M, Jiang R Y. Weibull Models[ M]. New York: Wiley, 2003.
  • 2费鹤良,陈迪.三参数威布尔分布的参数估计方法[J].上海师范大学学报(自然科学版),1996,25(2):1-8. 被引量:12
  • 3周广涛.计算机辅助可靠性设计[M].北京:宇航出版社,1990:102-106.
  • 4Vapnik V N. Statistical Learning Theory[ M]. Wiley,New York, 1998.
  • 5Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [ M ]. Cambridge University Press, March, 2000.
  • 6Gunn S R. Support Vector Machines for Classification and Regression[ R ]. Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton, 1997.
  • 7Dumais S, Platt J, Heckerman J, Sahami M. Inductive learning algorithms and representations for text categorization [ A ]. In: Proceedings of ACM-CIKM98 [ C ], 1998.
  • 8Cao L J, Tay Francis E H. Support vector machine with adaptive parameters in financial time series forecasting[ J]. IEEE Trans- actions on Neural Networks, 2003,6 ( 14 ) : 1506 - 1518.
  • 9Vapnik V. The Nature of Statistical Learning Theory [ M ]. Springer-Verlag. New York, 1995.
  • 10Scht-lkopf B and Smola A J. Learning with Kernels-support Vector Machines, Regularizafion, Optimization and Beyond [ M ]. MIT Press,Cambridge, MA, 2002.

共引文献11

同被引文献109

引证文献7

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部