期刊文献+

核诱导距离度量的鲁棒典型相关分析 被引量:2

Robust Canonical Correlation Analysis Based on Kernel-Induced Measure
下载PDF
导出
摘要 典型相关分析(canonical correlation analysis,CCA)是寻找同一对象两组变量间线性相关性的一种常用的多元统计分析方法,其采用的欧氏距离度量方式导致了算法的非鲁棒性。核诱导的距离度量不仅在理论上被证明是鲁棒的,而且在(聚类)应用上获得了有效验证。将其进一步应用于CCA,发展出了核诱导距离度量的鲁棒CCA(CCA based on kernel-induced measure,KI-CCA)。该算法不仅克服了CCA非鲁棒的不足,而且使现有基于最大相关熵的鲁棒主成分分析(half-quadratic principal component analysis,HQ-PCA)成为特例,且具有非线性相关分析的能力。一方面,核的多样性使得KI-CCA也具有多样性,从而使其成为一般性的分析算法。另一方面,与CCA刻画上的相似性,使其求解可归结为广义特征值问题。在人工数据、多特征手写体数据库(multiple feature database,MFD)和人脸数据集(Yale、AR、ORL)上的实验验证了该算法的有效性。 Canonical correlation analysis (CCA) is a commonly used multivariate statistical analysis method which aims at searching for the linear correlation between the two sets of variables of the same object. And the Euclidean distance measure used in CCA results in robustness problem. Kernel-induced measure has been proved to be robust in theory, and has been successfully used in clustering. This paper develops a robust CCA based on kernel-induced measure (KI-CCA). It not only overcomes the shortcomings of CCA and some related algorithms which are not robust, but also makes the robust principal component analysis based on maximum entropy be a special case, and has the ability of nonlinear correlation analysis. Because of the diversity of kernel functions, KI-CCA is a general algorithm. The solution can be obtained by solving a generalized eigenvalue problem as CCA. Experiments on toy problem, multiple feature database (MFD) and face datasets (Yale, AR, ORL) demonstrate the effectiveness of KI-CCA.
出处 《计算机科学与探索》 CSCD 2012年第8期708-716,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61170151 南京航空航天大学研究基金No.NP2011030~~
关键词 典型相关分析(CCA) 核诱导 鲁棒性 广义特征值问题 canonical correlation analysis (CCA) kernel-induced robustness generalized eigenvalue problem
  • 相关文献

参考文献26

  • 1Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical corre- lation analysis: an overview with application to learning method[J]. Neural Computation, 2004, 16(12): 2639-2664.
  • 2Gao Haibo, Hong Wenxue, Cui Jianxin, et al. Optimization of principal component analysis in feature extraction[C]// Proceedings of the 2007 International Conference on Me- chatronics and Automation (ICMA 2007), Harbin, Aug 5-8, 2007: 3128-3132.
  • 3Zheng Wenming, Zhou Xiaoyan, Zou Cairong, et al. Facial expression recognition using kemel canonical correlation analysis(KCCA) [J]. IEEE Transactions on Neural Networks, 2006, 17(1): 233-238.
  • 4Abraham B, Merola G. Dimensionality reductions approach to multivariate prediction[J]. Computational Statistics and Data Analysis, 2005, 48(1): 5-16.
  • 5Loog M, van Ginneken B, Duin R P W. Dimensionality reduction of image features using the canonical contextual correlation projections[J]. Pattern Recognition, 2005, 38(12): 2409-2418.
  • 6Hel-Or Y. The canonical correlations of color images and their use for demosaicing, HPL-2003-164(R1)[R]. HP Labs, 2004.
  • 7Akaho S. A kernel method for canonical correlation analysis[C]//Proeeedings of the 2001 International Meeting of Psychometric Society (IMPS 2001). Berlin: Springer- Varlag, 2001.
  • 8Melzer T, Reiter M, Bischof H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recog- nition, 2003, 36(9): 1961-1971.
  • 9Horikawa Y. Use of autocorrelation kemels in kemel canon- ical correlation analysis for texture classification[C]//LNCS 3316: Proceedings of the l lth International Conference on Neural Information Processing (ICONIP 2004), Calcutta, India, Nov 22-25, 2004. Berlin, Heidelberg: Springer-Verlag, 2004: 1235-1240.
  • 10Sun Tingkai, Chen Songcan. Locality preserving CCA with application to data visualization and pose estimation[J]. Im- age and Vision Computing, 2007, 25(5): 531-543.

二级参考文献28

  • 1Borga M, Knutsson H. Canonical correlation analysis in early vision Processing. In: Proc. of the 9th European Symp. on Artificial Neural Networks. 2001. 309-314.
  • 2Gao HB, Hong WX, Cui JX, Xu YH. Optimization of principal component analysis in feature extraction. In: Proc. of the IEEE Int'l Conf. on Mechatronics and Automation. 2007.3128-3132.
  • 3Zheng WM, Zhou XY, Zou CR, Zhao L. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. on Neural Networks, 2006,17(1):233-238.
  • 4Loog M, B. van Ginneken B, Duin RPW. Dimensionality reduction by canonical contextual correlation projections. In: Proc. of the European Conf. on Computer Vision. 2004. 562-573.
  • 5Hel-Or Y. The canonical correlations of color images and their use for demosaicing. Technical Report, HPL-2003-164(R1), HP Labs., 2004.
  • 6Friman O, Carlsson J, Lundberg P, Borga M, Knutsson H. Detection of neural activity in functional MRI using canonical correlation analysis. Magnetic Resonance in Medicine, 2001,45(2):323-330.
  • 7Knutsson H, Borga M, Landelius T. Learning multidimensional signal processing. In: Proc. of the 14th Int'l Conf. on Pattern Recognition. 1998. 1416-1420.
  • 8Nielsen AA. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans. on Image Processing, 2002,11 (3):293-305.
  • 9Vlassis N, Motomura Y, Krose B. Supervised linear feature extraction for mobile robot localization. In: Proc. of the 2000 IEEE Int'l Conf. on Robotics and Automation. 2000. 2979-2984.
  • 10Abraham B, Merola G. Dimensionality reductions approach to multivariate prediction. Computational Statistics and Data Analysis, 2005,48(1):5-16.

共引文献31

同被引文献15

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2赵国杰,赵红梅.基于网络层次分析法的城市竞争力评价指标体系研究[J].科技进步与对策,2006,23(11):126-128. 被引量:27
  • 3陈梦筱.中原城市群城市竞争力实证研究[J].经济问题探索,2007(2):33-39. 被引量:30
  • 4张衍阁.中国城市分级[J].第一财经周刊,2013,(47):35-41.
  • 5HOTELLING H. Relations between two sets of variates. Biometrika, 1936, 28, 3 - 4:321 - 377.
  • 6AKAHO S. A kernel method for canonical correlation analysis, In Proceedings of the International Meeting of the Psychometric Society, Osaka, Japan, 2011.
  • 7ZHU X, HUANG Z, SHEN H, et al., Dimensionality reduction by mixed lernel canonical correlation analysis, Pattern Recognition, 2012, 45 ( 8): 3003- 3016.
  • 8LIU Y, LIU X, SU Z. A new fuzzy approach for handling class labels in canonical correlation analysis, Neurocomputing, 2008, 71,7-9: 1735- 1740.
  • 9BLASCHKO M B, SHELTON J A, BARTELS A, et al., Semi-supervised kernel canonical correlation analysis with application, Pattern Recognition Letters, 2011, 32:1572 - 1583.
  • 10OTOPAL, N. Restricted kernel canonical correlation analysis, Linear Algebra and its Applications, 2012, 437:1 - 13.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部