期刊文献+

受限空间内爆燃波瞬态流速与超压的耦合关系 被引量:9

Coupled Relationship Between Gas Velocity and Peak Overpressure of Deflagration Wave in Confined Space
下载PDF
导出
摘要 为了奠定不同强度爆炸波扬尘能力的评估基础,采用数值模拟的方法研究了开口型和闭口型系统内爆炸波前瞬态流速与爆炸超压的定量耦合关系.研究结果表明,煤矿开口型系统的爆炸波和波前流速从波形上分为3个阶段,瞬态流速和爆炸超压的关系可以用两个拟合度非常好的线性函数表达,在初始阶段呈线性反比关系,随着爆炸进一步发展,爆炸超压与流速都呈增大趋势,两者呈线性正比关系.闭口型系统内的爆炸波形呈明显的振荡特征,对于爆燃波,振荡波有两道,即前驱冲击波的振荡和热压缩波的振荡.由于爆炸波的振荡叠加,使其超压和流速较开口型系统内的高.爆炸流速的预测,可以采用首次峰值和超压的关系进行预测. In order to establish the basis for evaluating the dust lifting ability of shock wave, the simulation on the relationship between gas velocity and peak overpressure of a deflagration wave has been carried out for both an open end pipe and a closed end pipe. It was found that blast wave and gas velocity evolution were separately divided into three stages. The relationship between peak gas velocity and peak overpressure followed a similar linear function. Peak gas velocity was linearly and inversely proportional to peak overpressure at the initial stage. They were linearly proportional to each other at the final stage. Shock wave oscillation in confined tunnels was obviously observed. There were two different reflection waves for deflagration. One is the reflection wave of front shock wave, and the other is compression wave. The oscillation of blast wave can lead to higher peak overpressure. The oscillation pectrogram plot of reflection wave and its relationship with arrival time were presented in the paper for the first time.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2012年第4期326-330,共5页 Journal of Combustion Science and Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB201205) 中国矿业大学科研人才基金资助项目(2011RC07) 青年教师启航计划资助项目 中央高校基本科研业务费专项资金资助项目(2012QNB01)
关键词 瓦斯爆炸 爆燃 流速 超压 gas explosion deflagration velocity overpressure
  • 相关文献

参考文献13

  • 1Gerrard J H. An experimental investigation of the initial stages of the dispersion of dust by shock waves EJ]. Brit- ish Journal of Applied Physics, 1963, 14(4): 186- 192.
  • 2Fletcher B. The interaction of a shock with a dust deposit [J]. Journal of Physics D: Applied Physics, 1976, 9(2) : 197-202.
  • 3Kuznetsov M, Alekseev V, Matsukov I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture [J]. Shock Waves, 2005, 14(3) : 205-215.
  • 4Ciccarelli G, Johansen C T, Parravani M. The role of shock-flame interactions on flame acceleration in an ob- stacle laden channel[J]. Combustion and Flame, 2010, 157(11): 2125-2136.
  • 5杨书召,景国勋,贾智伟.矿井瓦斯爆炸冲击气流伤害研究[J].煤炭学报,2009,34(10):1354-1358. 被引量:14
  • 6Launder B E, Spalding D B. Mathematical Models of Turbulence [M]. London: Academic Press, 1972.
  • 7Sedov L I. Problems of Hydrodynamics and Continuum Mechanics [M]. Philadelphia, USA: Society for Indus- trial and Applied Mathematics, 1969.
  • 8Bray K N C. Studies of the turbulent burning velocity [J]. Proceedings of the Royal Society of London, 1990, 431(1882): 315-335.
  • 9Karl Z R. Explosion Pressure Design Criteria for New Seals in U.S. Coal Mines[R]. Pittsburgh, USA: Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 2007.
  • 10Century Dynamics Inc. AutoReaGas User Manual Ver- sion 3.1 [R]. Houston: TNO Prins Maurits Lab, 2002.

二级参考文献10

共引文献13

同被引文献137

引证文献9

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部