期刊文献+

水压致裂应力测量系统柔性分析及其对深孔测量的影响 被引量:15

Compliance of Drilling-rod System for Hydro-fracturing in Situ Stress Measurement and Its Effect on Measurements at Great Depth
下载PDF
导出
摘要 在中国大陆范围内广泛使用的钻杆式水压致裂测试系统由6个部分组成,分别为压力流体控制系统、高压水泵、动力系统、数据记录系统、跨接式封隔器和钻杆系统。该套测试系统又可以分为两类,一种是针对孔深<100 m的浅孔测试系统,一种是针对孔深>100 m的深孔测试系统。对于钻杆式水压致裂系统,钻杆、连接管线以及钻孔变形对系统柔性影响均极微小,封隔器变形和压裂液压缩性是主要影响因素。当测试深度小于100 m时,测试系统柔性主要受封隔器变形和系统压裂液压缩性控制;而当测试深度大于100 m时,测试系统柔性主要受系统压裂液压缩性控制。对于深孔测试,钻杆式水压致裂测试系统柔性过大,会影响重张压力Pr0的准确确定。为了消除系统柔性对深孔测试的影响,可以通过其他方法来确定实验段岩体抗拉强度Tfh,进而确定最大水平主应力SH,或者通过其他方法来直接估算SH。在未来的研究工作中,开发井下传感器和井下流量计将是从根本上消除测试系统柔性影响的一条可靠途径。 The widely-accepted hydro-fracturing system in China mainland consists of six parts,i.e.control system for hydraulic fluid,high-pressure pump,power supply system,data recording system,straddle packers,and watertight drilling rods.This whole testing system can be divided into two kinds: one is the shallow testing system for boreholes with depth less than 100 m,the other is the deep testing system for boreholes with depth more than 100 m.As for the drilling-rod hydro-fracturing measurement system,the elastic deformations of drilling rods,connection high-pressure hoses and rock mass around testing interval have little effects on the compliance of testing system,and the elastic deformation of packers and the compressibility of fracturing fluids are two major factors.When testing interval is less than 100 m in depth,the compliance of testing system is controlled by the elastic deformation of packers and the compressibility of fracturing fluid,and when testing interval is greater than 100 m in depth,the compliance of testing system is controlled by the compressibility of fracturing fluids.For the testing at great depth,due to the large compliance of testing system,it is very difficult to determine the reopening pressure Pr0.In order to eliminate the negative effects from the compliance of testing system during the measurement campaign in deep boreholes,it is recommended to adopt other methods to determine Tfh,the tensile strength of rock mass around the testing interval so as to determine the maximum horizontal principal stress SH,or utilize other techniques to estimate SH.In the future research,the potential feasible way is to develop new down-well pressure gauges and flow meters in order to completely eliminate the negative effects from the compliance of testing system.
出处 《现代地质》 CAS CSCD 北大核心 2012年第4期808-816,共9页 Geoscience
基金 中央级科研院所基本科研业务专项资助项目(ZDJ2012-20) 中国地震局地震行业科研专项项目(201108008)
关键词 水压致裂 测量系统柔性 重张压力 钻杆式 流量 hydro-fracturing compliance of testing system reopening pressure drilling pipe type flow rate
  • 相关文献

参考文献22

  • 1Hubbert K M, Willis D G. Mechanics of hydraulic fracturing [J]. Petroleum Science and Technology, 1957, 210:153 - 166.
  • 2Scheidegger A E. Stresses in the Earth's crust as determined from hydraulic fracturing data [ J]. Geologie und Bauwesen, 1962, 27 : 45 - 53.
  • 3Kehle R O. Determination of tectonic stresses through analysis of hydraulic well fracturing [ J]. Journal of Geophysical Research, 1964, 69:252-273.
  • 4Fairhurst C. Measurement of in situ rock stresses with particular references to hydraulic fracturing [J]. Rock Mechanics and Engineering Geology, 1964, 2 : 129 - 147.
  • 5Haimson B C, Fairhurst C. Initiation and extension of hydraulic fractures in rocks I J]. Society of Petroleum Engineers Journal, 1967, 9:310-318.
  • 6Haimson B C. Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth [D]. Twin Cities : University of Minnesota, 1968 : 1 - 50.
  • 7Von Schonfeldt H, Fairhurst C. Field experiments on hydraulic fracturing [ J]. Society of Petroleum Engineers, American Institute of Mining Engineers Journal, 1972, 12:1234 - 1232.
  • 8Haimson B C. Earthquake related stresses at Rangely, Colorado [M] //The American Society of Civil Engineers. The 14th U. S. Symposium on Rock Mechanics. University Park: The American Society of Civil Engineers, 1972:689 -708.
  • 9Raleigh C B, Healy J H, Bredehoeft J D. An experiment in earthquake control at Rangely, Colorado [ J]. Science, 1976, 191 : 1230 - 1237.
  • 10Amadei B, Stephansson O. Rock stress and its measurement [M]. London: Chapman & Hall, 1997:1 -50.

二级参考文献14

  • 1刘允芳,刘鸣.水压致裂法地应力测量破裂准则的探讨[J].长江科学院院报,1995,12(2):36-43. 被引量:10
  • 2刘允芳.在同一钻孔中水压致裂法地应力测量与套钻孔应力解除法测量成果的比较[J].地震研究,1995,18(1):80-85. 被引量:9
  • 3刘允芳 高建理.水压致裂法三维地应力测量的原理和在广州抽水蓄能电站的实践.第三届全国地应力会议专辑[M].北京:地震出版社,1994.26-37.
  • 4刘允芳 高建理.水压致裂法三维地应力测量的原理和广州抽水蓄能电站的实践.第三届全国地应力会议专辑[M].地震出版社,1994.26-37.
  • 5C.Ljunggren.根据水平向水压破裂估计原地应力[J].地壳构造与地壳应力,1991,(2):26-36.
  • 6刘允芳,第三届全国地应力会议专辑,1994年,26页
  • 7刘允芳,第三届全国地应力会议专辑,1994年,26页
  • 8李方全,三峡坝区水库诱发地震研究-茅坪钻孔的现场测试与分析,1993年
  • 9C Ljunggren,地壳构造与地壳应力,1991年,2期,26页
  • 10于学馥,地下工程围岩稳定性分析,1983年

共引文献50

同被引文献100

引证文献15

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部