期刊文献+

基于宏基因组技术获得的对厌氧氨氧化菌代谢的新理解 被引量:8

New Understanding on Metabolism of Anaerobic Ammonium Oxidation Bacteria Based on Metagenomics Technology
原文传递
导出
摘要 厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB)是化能自养菌,由于其生理代谢的奇异性、细胞结构的特殊性以及对氮素循环的重要性,已成为环境工程、微生物以及海洋生物学等领域的研究热点.然而,AAOB未能实现纯培养的现状已成为AAOB代谢途径研究的巨大障碍.近年来兴起的宏基因组技术(Metagenomics)为AAOB代谢途径的研究提供了新手段.采用宏基因组技术,可直接研究微生物群体中某特定微生物基因组的结构与功能,摆脱了传统微生物学研究对纯培养的依赖,使未培养微生物的认识和开发成为可能.本文首先简述获取AAOB宏基因组信息的过程,然后通过比较由传统代谢研究方法和宏基因组技术获得的AAOB代谢途径的研究成果,论述基于宏基因组技术获得的对AAOB代谢的新理解,得出以下结果和结论:1)AAOB的碳素固定途径为乙酰辅酶A途径,碳素固定的还原力来自NADH或者QH2;2)AAOB氮素转化的重要中间产物是NO,而非NH2OH,并提出了以NO为核心的AAOB代谢的改进模型;3)AAOB的ATP合成途径为氧化磷酸化,推测的电子传递途径为N2H4—QH2—细胞色素bc1复合体;细胞色素bc1复合体再将电子用于NO2-还原和N2H4合成.AAOB的宏基因组技术使AAOB代谢途径的研究更具方向性.随着分子生物学理论和技术的不断发展,宏基因组学的升级技术(如宏转录组学、宏蛋白质组学)将为AAOB代谢途径的研究提供新的方法与平台. Anaerobic ammonium oxidation bacteria (AAOB) belong to chemolitho-autotrophs. AAOB have become one of the research hotspots in the field of environmental engineering, microbiology and oceanography because of their specificities in metabolism, cell structure and nitrogen cycle. However, AAOB can not been cultivated in pure culture, which has become a great obstacle to study their metabolic pathways in further. Nowadays, fast-developing metagenomics provides us a new solution to study AAOB’s metabolism. Metagenomics mainly focuses on the structure and function relationships of particular genomes in a specific mixed microorganism population, which does not need traditional pure cultivation of microorganisms but makes it possible to recognize and exploit the uncultured microorganisms. Here we firstly summarize how the AAOB’s genomic information is gathered. Then we further review the new understanding on the AAOB’s metabolic pathways based on metagenomics by comparing with the conventional methods. Particularly, progresses on the carbon fixation, nitrogen conversion and ATP synthesis of AAOB are discussed in details in order to give some instructions for AAOB’s metabolism studies. Some constructive results and conclusions are reported as follows: 1) The carbon fixation pathway in AAOB is through reductive acetyl CoA pathway, and the reducing power originates from NADH or reduced ubiquinone (QH2). 2) Nitric oxide (NO) is an important intermediate product in nitrogen conversion, but not hydroxylamine (NH2OH). A new modified model based on nitric oxide is proposed. 3) The ATP synthetic pathway is through oxidative phosphorylation. The deduced electron transport chain is as follows: Hydrazine (N2H4) releases electrons to reduced ubiquinone, and then passes to cytochrome bc1 complex.The electrons are used to reduce nitrite (NO2-) or produce N2H4. The studies on AAOB’s metabolism based on metagenomics technology will be more directive. With the development of theories and methods on molecular biology, new technologies including metatranscriptomics and metaproteomics will provide more new methods and accurate information for studies on AAOB’s metabolism. Fig 3, Tab 1, Ref 51
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2012年第4期697-704,共8页 Chinese Journal of Applied and Environmental Biology
基金 国家"863"项目(No.2009ZZ06311) 国家自然科学基金(No.31070110) 浙江省自然科学基金(No.Z5110094)~~
关键词 宏基因组技术 厌氧氨氧化菌 碳素固定 氮素转化 ATP合成 metagenomics anaerobic ammonium oxidation bacterium carbon fixation nitrogen conversion ATP synthesis
  • 相关文献

参考文献51

  • 1Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol, 1995, 16 (3): 177-183.
  • 2Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G., van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM. Missing lithotroph identified as new planctomycete. Nature, 1999, 400 (6743): 446-449.
  • 3van de Graaf AA, De Bruijn P, Robertson LA, Kuenen JG. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology (UK), 1996, 142:2187-2196.
  • 4Kartal B, van Niftrik L, Rattray J, van de Vossenberg JL, Schmid MC Damste JSS. Jetten MSM, Strous M. Candidatus 'Brocadia fulgida An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol, 2008, 63 (1): 46-55.
  • 5Hu BL, Zheng P, Tang CJ Chen JW, van der Biezen E, Zhang L, Ni BJ Jetten MSM, Yan J,Y u HQ, Kartal B. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res, 2010 449 (17): 5014-5020.
  • 6Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten o MSM, Metzger JW, Schleifer KH, Wagner M. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol, 2000, 23 (1): 93-106.
  • 7Schmid M, Walsh K, Rijpstra WIC, van de Pas-Schoonen KT Verbruggen M J, Hill T, Moffett B, Fuerst JA, Schouten S, Damste JSS, Harris J, Shaw P, Jetten MSM, Strous M. Candidatus "Scalindua brodae", sp nov., Candidatus "Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 26 (4): 529-538.
  • 8Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB,Kuenen JG, Damste JSS oxidation by anammox (6932): 608-611 Strous M, Jetten MSM. Anaerobic ammonium bacteria in the Black Sea. Nature, 2003, 422.
  • 9Tsushima I, Ogasawara Y, Kindaichi T, Satoh H and Development of high-rate anaerobic ammonium-oxidizing biofilm reactors. Water Res, 2007, 41 (8): 1623-1634 Okabe S. (anammox).
  • 10Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damste, JSS, Jetten, MSM, Strous M. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 2007, 30 (1): 39-49.

二级参考文献42

共引文献259

同被引文献89

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部