期刊文献+

人工冻土单轴抗压强度GA-SVM预测模型 被引量:4

Forecasting Model for Uniaxial Strength of Artificial Frozen Soil Based on Genetic Algorithm Support Vector Machines Method
下载PDF
导出
摘要 为了预计冻结法凿井中井壁结构设计中的人工冻土单轴抗压强度,利用支持向量机在处理小样本分类学习的独到优越性及遗传算法全局并行搜索优化的特点,结合影响人工冻土单轴抗压强度因素,提出了人工冻土单轴抗压强度不同核函数的遗传支持向量机计算模型,并运用该模型预计了两淮地区第四系人工冻土单轴抗压强度。结果表明,多项式核函数的遗传支持向量机模型较高斯径向基核函数及Sigmoid核函数的遗传支持向量机模型较准确地预计人工冻土单轴抗压强度。该模型为人工冻土单轴抗压强度的预计提供了一条新途径。 In order to predict artificial frozen soil uniaxial strength which is an important parameter for the shaft design during freezing sinking, the genetic algorithm support vector machine model is put forward which can cal- culate artificial frozen soil uniaxial compressive strength, based on the artificial permafrost uniaxial compressive strength test and using genetic algorithm which has the global optimization ability to optimize the support vector machine parameter which can solve small sample. The calculated results show that polynomial kernel function genetic support vector machine is better to calculate the artificial frozen soil strength. The genetic algorithm support vector machine is a new method to predict the artificial frozen soil uniaxial strength.
出处 《安徽理工大学学报(自然科学版)》 CAS 2012年第2期1-5,共5页 Journal of Anhui University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(40972188/DO214) 安徽理工大学博士科研启动基金资助项目 安徽省重点实验室资助项目
关键词 人工冻土单轴抗压强度 遗传支持向量机 预计模型 Artificial frozen soil uniaxial strength genetic algorithm support vector machines forecasting model
  • 相关文献

参考文献8

二级参考文献11

  • 1田旭光,宋彤,刘宇新.结合遗传算法优化BP神经网络的结构和参数[J].计算机应用与软件,2004,21(6):69-71. 被引量:64
  • 2刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997..
  • 3[3]Miller, G.F,Todd,P.M.and Hedge,S. U. Designing neural networks using genetic algorithms. Proccedings of Third International Conference on Genetic Algorithms, pp. 379 ~ 384,1989.
  • 4[4]Gary G. Yen, Haiming Lu. Hierachical Genetic Algorithm Based on Neural Network Design. IEEE Symposium on Combinations of Evolutionary Computation and Neural Network,2000.
  • 5[5]Goldberg D E. Genetic Algorithms in Search. Optimization & Machine Learning. Addison-Wesley Publishing, 1989.
  • 6[6]M. Srinivas and L. M. Patnaik, Genetic search: analysis using fitness moments, IEEE Transactions on Knowledge and Data Engineering, Volume:8 Issue: 1, Feb. 1996.
  • 7Burge CJC. A tutorial on support vector machines for pattern recognition[J] .Data Mining and Knowledge Discovery, 1998, (2) :121 - 167.
  • 8Alex J Smola, Bernhard Schoelkopf. A Tutorial on Support Vector Regression[R]. NeuroCOLT2 Technical Report Series, 1998.
  • 9John C Platt. Sequeotial Minimal Optimization:A Fast Algorithm for training Support Vector machines[R].Technical Report,1998
  • 10王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..

共引文献216

同被引文献39

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部