期刊文献+

Na^+对Li/改性石墨电池循环性能的影响研究 被引量:5

Study on the Effect of Sodium Ion on Cycle Performance of Lithium/Improved Graphite Lithium Ion Cell
下载PDF
导出
摘要 分别用普通 4A和锂化 4A分子筛两种方法去除锂离子电池非水电解质体系 (EC/DEC/LiClO4 )中的微量水 ,引进不同浓度的Na+ 离子 .用原子吸收光谱法测定两种情况下体系中的Na+及Li+ 浓度 ;然后于室温下恒电流充放电 ,测定利用上述两种除水方法所得电解液配制的Li/石墨电池的循环性能 .结果表明 ,小电流下充放电 ,高Na+ 浓度能对锂离子电池循环性能构成严重破坏 ;随着电流的增大 ,电池对Na+ 的敏感性降低 .根据对循环后的电极片进行电子扫描实验结果 ,提出了Na+ 对锂离子电池循环性能影响机理的电化学解释 . The different concentration of Na + was introduced into the non_aqueous eletrolyte system EC/DEC/LiClO 4 with 4A molecular sieve and lithiated 4A molecular sieve,by which the trace amount of water was removed.The concentrations of Na + and Li + were determined by atomic adsorption spectrometry. The cycle performance of lithium/improved graphite cells was then examined by charging and discharging under the constant electric current.The results demonstrated that the cycle performance of the cells was destroyed by the high concentration of Na + under the small electric current.With the increase of electric current,the cell became less sensitive to the concentration of Na +.According to the examination of cycled cathode's surface by SEM,the mechaninsm of sodium ion's effect on cycle performance of lithium ion cell was raised.
出处 《电化学》 CAS CSCD 2000年第2期212-217,共6页 Journal of Electrochemistry
关键词 恒电流 循环性能 锂离子电池 锂化4A分子筛 A mloecular sieve, Lithiated 4A molecular sieve, Constant electric current, Cycle performance
  • 相关文献

参考文献5

  • 1Wu Yuping,Electrochem Solid State Lett,1999年,2卷,3期,399页
  • 2Isao Mochida,J Power Sources,1998年,75卷,214页
  • 3Zhang Wen,电池,1997年,27卷,3期,132页
  • 4Wu Haoqing,Electrochemistry Kinetics,1997年,195页
  • 5Liu Yirong,Aseries of Inorganic Chemistry.1,1984年,338页

同被引文献32

  • 1张引枝.以CF为阴极材料的锂二次电池[J].新型炭材料,1994,10(1):50-51. 被引量:2
  • 2庄全超,陈作锋,董全峰,姜艳霞,周志有,孙世刚.锂离子电池电解液中甲醇杂质对石墨电极性能影响机制的电化学阻抗谱研究[J].高等学校化学学报,2005,26(11):2073-2076. 被引量:18
  • 3许梦清,左晓希,李伟善,周豪杰,刘建生,袁中直.石墨电极在PC系电解液中的嵌锂行为[J].电池,2006,36(3):205-207. 被引量:5
  • 4Choi W, Manthiram A. Influence of fluorine on the electrochemical performance of spinel LiMn2-y-zLiyZnzO4-ηFη cathodes [ J ]. Journal of the Electrochemical Society, 2007, 154 (7) : A614.
  • 5Chen Z H, Amine K. Capacity fade of Li1 +x Mn2-xO4-based lithium-ion cells [ J ]. Journal of the Electrochemical Society, 2006, 153(2): A316.
  • 6Xia Y G, Zhang Q, Wang H Y, Nakamura H, Noguchi, H, Yoshio M. Improved cycling performance of oxygen-stoiehiometric spinel Li1+x Aly Mn2 -x - y O4 + δ at elevated temperature [ J ]. Electrochimica Aeta, 2007, 52: 4708.
  • 7Han J M, Myung S T, Sun Y K. Improved electrochemical cycling behavior of ZnO-coated Li1.05Al0.1Mn1.85O3.95F0.05 spinel at 55℃ [J]. Journal of the Electrochemical Society, 2006, 153 (7) : A1290.
  • 8Eftekhari A. Bundled nanofibers of V-doped LiMn2O4 [ J ]. Spinel Solid State Communications, 2006, 140 : 391.
  • 9Yu L, Qiu x, xi J, Zhu W T, Chen L Q. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery [ J]. Eleetrochimica Acta, 2006, 51 : 6406.
  • 10Tu J, Zhao X B, Cao G S, Zhuang D G, Zhu T J, Tu J P. Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method [ J ]. Electrochimica Acta, 2006, 51 : 6456.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部