期刊文献+

基于模糊聚类和形态学的轮胎断面特征提取 被引量:3

Feature extraction of tire section based on fuzzy clustering and morphology
下载PDF
导出
摘要 针对轮胎断面图像中胶料之间灰度相差小,边界模糊性强,传统的边缘提取方法难以实现断面特征提取的问题,提出了1种将多层次模糊增强、模糊C均值聚类以及形态学等方法有机结合,用于轮胎断面特征提取的算法.该算法先将钢丝区域去除并对图像整体进行灰度变换,然后通过多层次模糊增强,增加胶料之间的对比度,再运用模糊C均值聚类分割出各胶料区域,并对各区域进行形态学处理并提取边界,最后将各区域边界叠加,加入钢丝区域,得到轮胎断面的特征.对不同光照条件下的轮胎断面图像进行试验.结果表明:该算法可以解决轮胎断面图像中胶料之间灰度差小的问题,并有效提取了轮胎断面中的胶料边界和钢丝特征,且对光照条件具有一定的适应性. The features of tire section were difficult to be extracted by the traditional edge detection me-thods because of the small difference of gray value between rubbers in the tire section image and the fuzzy boundaries. An algorithm was proposed to extract the features of tire section by combining multi-level fuzzy enhancement, fuzzy C-means clustering and morphology. The regions of steel wires were removed to transform the gray values of image. The multi-level fuzzy enhancement was used to increase the contrast between rubbers. The rubber regions were effectively segmented by fuzzy C-means clustering, and the boundaries were extracted by morphology. The features of tire section were obtained by stacking the boundary of each region and adding steel wires. Experiments of tire section image were conducted under different light conditions. The results show that the algorithm can effectively solve the problem of small gray value difference between rubbers in the image of tire section and extract the features of tire section with good applicability to different light conditions.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2012年第5期513-517,共5页 Journal of Jiangsu University:Natural Science Edition
基金 高等学校博士学科点基金资助项目(20070299006) 江苏省六大人才高峰项目(07D019)
关键词 轮胎断面 多层次模糊增强 模糊C均值聚类 形态学 tire section multi-level fuzzy enhancement fuzzy C-means clustering morphology
  • 相关文献

参考文献11

二级参考文献25

共引文献99

同被引文献54

  • 1王永皎,张引,张三元.基于图像处理的植物叶面积测量方法[J].计算机工程,2006,32(8):210-212. 被引量:26
  • 2Deng Li, Yu Dong. Deep learning for signal and infor- mation processing[ R]. Microsoft Research, 2013.
  • 3胡晓林,朱军.深度学习——机器学习领域的新热点[J].中国计算机学会通讯,2013,9(7):64—69.
  • 4Bengio Yoshua. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009,2 (1): 1 -27.
  • 5Duarte-Carvajalino J M, Yu G S, Carin L, et al. Task- driven adaptive statistical compressive sensing of gaussi- an mixture models [ J J. IEEE Transactions on Signal Processing, 2013, 61(3): 585-600.
  • 6Abdel-Rahman E M, Mutanga O, Adam E, et al. De- tecting sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers [ J ]. 1S- PRS Journal of Photogrammetry and Remote Sensing, 2014, 88:48-59.
  • 7Sarikaya R,Hinton G E, Deoras A. Application of deepbelief networks for natural language understanding [ J ],IEEE Transactions on Audio,Speech and Language Pro-cessing,2011, 22(4) : 778 -784.
  • 8Fischer A, Igel C. Training restricted Boltzmann ma-chines :an introduction [ J ] . Pattern Recognition, 2014,47(1) :25 -39.
  • 9Wan L,Zeiler M,Zhang S X,et al. Regularization ofneural networks using dropconnect[C] //Proceedings ofthe 30th International Conference on Machine Learning.AUanta:IMLS, 2013: 2095 -2103.
  • 10Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[ C] //Proceedings of 20thAnnual Conference on Neural Information Processing Sys-tems. Vancouver : Neural information processing systemfoundation,2007 : 153 - 160.

引证文献3

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部