期刊文献+

一种图像的显著区域提取方法 被引量:6

A Method of Extraction of Salient Regions in Image
下载PDF
导出
摘要 本文提出一种新的图像显著区域提取方法,分别提取原始图像的亮度、颜色、方向三个特征,并将三个特征的多尺度图像特征合并成一幅总的显著图;其中,在图像颜色特征提取中融入图像的频域特征,简化了算法的复杂度及实现难度,在图像方向特征提取中应用新的特征函数,使得方向特征图更加完善。实验结果显示本文方法相比较Itti算法显著图更为明显且易于实现,在图像目标重定位应用中图像形变少,效果更好。 A novel algorithm for salient region extraction is presented. First, three characteristics graphs of brightness, color, the orientation of the original image are extracted respectively. Then, multi-scale image features of the three characters are combined into one saliency map. Therein the color feature' is obtained in frequency domain, which can simplify the algorithm complexity and make it come true easily. In orientation feature extraction, a new characteristic function is used to make the orientation feature map more complete than Gabor function. The experiment results show that the method proposed is easier to be realized and can extract more obvious salient maps than Itti model. In image retargeting we demonstrate that using our saliency prevents distortions in the important regions
出处 《光电工程》 CAS CSCD 北大核心 2012年第8期18-25,共8页 Opto-Electronic Engineering
基金 国家科技支撑计划项目(2009BAI71B02) 河北省科技支撑项目(11213518D) 河北省教育厅自然科学重点项目(ZD200911)
关键词 显著区域 显著图 特征提取 视觉注意 图像目标重定位 salient regions saliency map feature extraction visual attention image retargeting
  • 相关文献

参考文献7

  • 1Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Trans on Pattern Analysis and Machine Intelligence(S0162-8828), 1998, 20(11): 1254-1259.
  • 2Stas Goferman, Lihi Zelnik-Manor, Ayellet Tal. Context-Aware Saliency Detection [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR2010), June 13-18, 2010, 13: 2376-2383.
  • 3HOU Xiao-di, ZHANG Li-qing. Saliency detection: a spectral residual approach [C]//IEEE Conference on Computer Vision and PatternRecognition(CVPR2007), Minneapolis, USA, June 17-22, 2007: 1-8.
  • 4Achanta R. Frequency-tuned Salient Region Detection [C]// IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, June 20-26, 2009: 1597-1604.
  • 5Wang J. Z. Corel 图像库 [BD/OL]. [2012-7-22]. http://code.google.com/p/cbmir/downloads/detail?name=Corel%E5%9B% BE%E5%83%8F%E5%BA%93.rar&can=2&q.
  • 6陈锻生,刘政凯.彩色图像边缘特征及其人脸检测性能评价[J].软件学报,2005,16(5):727-732. 被引量:17
  • 7Rubinstein M, Shamir A, Avidan S. Improved seam carving for video retargeting [J]. ACM Trans. on Graphics (S0730-0301), 2008, 27(3): 612-615.

二级参考文献12

  • 1Koschan A. A comparative study on color edge detection. In: Proc. of the 2nd Asian Conf. on Computer Vision ACCV'95.Singapore, 1995. 574-578. http://iristown.engr.utk.edu/~koschan/paper/ACCV95Proc.pdf
  • 2Hjelmas E, Low BK. Face detection: A survey. Computer Vision and Image Understanding, 2001,83(3):236-274.
  • 3Yang MH, Kriegman D, Ahuja N. Detecting faces in images: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence,2002,24(1):34-58.
  • 4Yang MH. Recent advances in face detection. Technical Report, IEEE ICPR 2004 Tutorial, Cambridge, 2004. http://vision.ai.uiuc.edu/mhyang/papers/icpr04_tutorial.pdf
  • 5Viola P, Jones M. Robust real-time object detection. In: IEEE ICCV Workshop on Statistical and Computational Theories of Vision.Vancouver, 2001.
  • 6VapnikVN 著 张学工 译.统计学习理论[M].北京:清华大学出版社,2000.100-101,176-208.
  • 7Gonzalez RC, Woods RE. Digital Image Processing. 2nd ed, Addison-Wesley, 2002. 335-338.
  • 8Martinez AM, Benavente R. The AR face database. Technical Report #24, 1998. http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html
  • 9Theodoridis S, Koutroumbas K. Pattern Recognition. 2nd ed, Elsevier Science, 2003. 173-174.
  • 10Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Interence, and Prediction. Springer_Verlag,2001. 214-215.

共引文献16

同被引文献64

  • 1Baluja S, Pomerleau D A. Expectation-Based Selective Attention for Visual Monitoring and Control of a Robot Vehicle [J]. Robotics and Autonomous Systems(S0921-8890), 1997, 22(3): 329-344.
  • 2Weiss L Ct Autonomous Robots in The Fog of War [J]. IEEE Spectrum(S0018-9235), 2011, 48(8): 30-57.
  • 3Zaklouta F, Stanciulescu B. Real-Time Traffic-Sign Recognition Using Tree Classifiers [J]. IEEE Transactions on Intelligent Transportation Systems(S1524-9050), 2012, 13(4): 1507-1514.
  • 4Jaewoong Choi, Junyoung Lee, Dongwook Kim. Environment-Detection-and-Mapping Algorithm for Autonomous Driving in Rural or Off-Road Environment [J]. IEEE Transactions on Intelligent Transportation Systems(S1524-9050), 2012, 13(2): 974-982:.
  • 5Coelingh E, Solyom S. All Aboard the Robotic Road Train [J]. IEEE Spectrum(S0018-9235), 2012, 49(11): 34-39.
  • 6Perrollaz M, Yoder J, Negre A, et al. A Visibility-Based Approach for Occupancy Grid Computation in Disparity Space [J]. IEEE Transactions on Intelligent Transportation Systems(S1524-9050), 2012, 13(3): 1383-1393.
  • 7Matthies L, Bellutta P, McHenry M. Detecting Water Hazards for Autonomous Off-road Navigation [J]. Proceedings of SPIE(S0277-786X), 2003, 5083: 231-242.
  • 8Nett J, Sarwal A, Simon D. Detection of Small Water Bodies [R]. Report Submitted by PercepTek Robotics 12395 N. Mead Way Littleton, CO80125, 2004.
  • 9Rankin A, Matthies L. Daytime Water Detection And Localization for Unmanned Ground Vehicle Autonomous Navigation [C]// Advances in Proceedings of the 25th Army Science Conference, Orlando, America, November, 2006: 215-221.
  • 10Rankin A, Matthies L. Daytime Mud Detection for Unmanned Ground Vehicle Autonomous Navigation [C]// Advances in Proceedings of the 26th Army Science Conference, Orlando, America, 2008: 906-913.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部