期刊文献+

欧拉弹力模型的视频运动目标自适应图切检测

Adaptive Graph-cut Algorithm of Video Moving Object Detection Based on Euler's Elastica Model
下载PDF
导出
摘要 传统的视频运动目标图切检测算法基于低阶马尔科夫随机场,能量函数的低阶近似无法准确描述图像像素的空间相关性,导致图切检测结果过度平滑。本文提出一种基于高阶欧拉弹力模型的图切检测算法,利用欧拉弹性模型优化目标边界曲线和修正能量函数的低阶近似。算法通过利用前一帧图像的检测结果,对当前帧图像运动目标像素点数和前景背景邻接像素对数进行卡尔曼预测,并不断自适应调整当前帧的图像模型参数,实现了视频运动目标的连续全局优化检测。实验结果验证了欧拉弹力模型在视频运动目标检测中的有效性,其检测结果能够更好地满足人的视觉效果。 The traditional graph-cut algorithm of video moving objects detection is based on the low-order Markov Random Field (MRF). Because of the low order approximation of the energy function, the detected moving objects will be over-smoothing. In this paper, an adaptive graph-cut algorithm based on Euler's elastica model is proposed, which uses Euler's elastica model to optimize the objects boundary and to amend the low-order approximation of the energy function. The proposed algorithm can continuously update the model parameters of current frame by Kalman prediction which estimates the number of moving objects pixels and objectives-background pixel-pairs. So the proposed algorithm can detect video moving objects in a continuous optimal mode. Experimental results show that the proposed method can effectively and stably detect moving objects, and the detection results can better meet the requirements of person's visual effects.
出处 《光电工程》 CAS CSCD 北大核心 2012年第8期32-37,共6页 Opto-Electronic Engineering
基金 浙江省自然科学基金资助项目(LY12F01003)
关键词 欧拉弹力模型 运动目标检测 图切 卡尔曼预测 Euler's elastica moving objects detection graph-cut Kalman prediction
  • 相关文献

参考文献12

  • 1Bouttefroy Philippe, Bouzerdoum Abdesselam, Phung Son Lam. on the analysis of background subtraction techniques using Gaussian mixture models [C]//2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, Texas, March 14-19, 2010. NewYork: NasserKehtarnavaz, 2010: 4042-4045.
  • 2Ramadass Ashok, Suk Myunghoon, Prabhakaran B. Feature extraction method for video based Human action recognitions: Extended Optical Flow algorithm [C]//ICASSP, Dallas, Texas, March 14-19, 2010. New York: Nasser Kehtarnavaz, 2010: 1106-1109.
  • 3Fakhfakh Nizar, Khoudour Louahdi, El-koursi El-miloudi, et al. Background Subtraction and 3D Localization of Moving and Stationary Obstacles at Level Crossings [C]//Image Processing Theory, Tools and Applications, Paris, July 7-10, 2010. Paris: Khalifa Djemal, 2010: 72-78.
  • 4Alessandro Lanza, Federico Tombari, Luigi Di Stefano. Accurate and Efficient Background Subtraction by Monotonic Second-Degree Polynomial Fitting [C]//Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston University, PhotonicsCenter, Aug29-Sept 1, 2010. Boston: KuntalSengupta, 2010: 376-383.
  • 5Bae Tae-wuk, Sohng Kyu-ik. Small Target Detection Using Bilateral Filter Based on Edge Component [J]. Infrared Milli TerahzWaves(S1866-6892), 2010, 31(6): 735-743.
  • 6Jung Chanho, Kim Beomjoon, Kim Changick. Automatic segmentation of salient objects using iterative reversible graph cut [C]//ICME, Suntec,City, Singapore, July 19-23, 2010. Suntec City: Changick Kim, 2010: 590-595.
  • 7Freedman Daniel, Zhang Tao. Interactive graph cut based segmentation with shape priors [C]// Proc. of the ConL on Computer Vision and Pattern Recognition, San Diego, California, June 20-25, 2005. New York: Marc Pollefeys, 2005: 755-761.
  • 8Wang Chun-hao, Guan Ling. Graph Cut Video Object Segmentation using Histogram of Oriented Gradients [C]//ISCAS, Seattle, Washington, USA, May 18-21, 2008. Seattle: MohamadSawan, 2008: 2590-2593.
  • 9Fukuchi Ken, Miyazato Kouji, Kimura Akisato, et al. Saliency-based video segmentation with graph cuts and sequentially updated priors [C]//ICME, Hilton Cancun, Cancun, Mexico, June 28-July 3, 2009. New York: Rong Yan, 2009: 638-641.
  • 10Chan Tony, Kang Sung Ha, Shen Jianhong. Euler's elastica and curvature based inpaintings [J]. SIAM J, Appl. Math(S0036-1399), 2001, 63(2): 564-592.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部