期刊文献+

μMOGA在可控减振器阻尼优化设计中的应用

Application of μ MOGA in Damping Optimum Design of the Controllable Damper
下载PDF
导出
摘要 采用微型多目标遗传算法μMOGA进行可控减振器阻尼值的优化,选取前后悬架的阻尼参数作为优化变量,将车身振动加速度、悬架动行程及轮胎动位移均方根值作为优化目标,同时考虑悬架系统在不同的载荷、车速及路面等级条件下的特性,对可控减振器的三档阻尼值进行优化设计。根据优化结果,最终确定可控减振器"软/中/硬"三档阻尼值。各种悬架仿真测试证明该算法是一种高效率的多目标全局优化方法。 The μ multi-objective genetic algorithm is used to optimize the damping values of the controllable vibration damper. The damping parameters of the front and rear suspension are selected as the optimization variables, and the MSR values of the body vibration acceleration, the suspension travel movement and the tyres dynamic displacement are selected as the optimization objective. The three-levels damping values of the controllable vibration damper are optimized design by considering the characteristics of the different load, speed and road surface level for the suspension system at the same time. According to the optimization results, the three-levels damping values of the controllable vibration damper are confirmed, i. e. "soft-middle-hard". The suspensions simulation test proved that this algorithm is a kind of high efficiency of the multi-objective global optimization method.
出处 《噪声与振动控制》 CSCD 2012年第4期183-187,共5页 Noise and Vibration Control
关键词 振动与波 微型多目标遗传算法 可控减振器 优化设计 仿真 vibration and wave μ multi-objective optimization genetic algorithms controllable damper optimumdesign simulation
  • 相关文献

参考文献6

  • 1王涛.汽车悬架参数的多目标多标准决策优化[J].农业机械学报,2009,40(4):27-32. 被引量:25
  • 2玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 3Deb K. Multi-objective optimization using evolutionary algorithms[M]. England: John Wiley & Sons, 2001: 13-46.
  • 4Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi- objective genetic algorithm: NSGAII[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182-197.
  • 5Deb K. An efficient constraint-handling method for genetic algorithms[J]. Comput. Methods Appl. Mech. Eng., 2000, 186(2-4): 311-338.
  • 6Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms:Empirical results. Evol[J]. Comput., 2000, 8(2): 173-195.

二级参考文献6

共引文献418

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部