期刊文献+

一种改进的IMMPF目标跟踪算法

An Improved IMMPF Object Tracking Algorithm
原文传递
导出
摘要 对多运动模型的目标进行跟踪,通常采用传统的交互式多模型粒子滤波算法。但是,该算法存在一些缺陷和不足。为此,提出了一种新的基于变速率模型和遗传算法的IMMPF目标跟踪算法。针对IMMPF算法对目标进行跟踪时可能出现的未知可变转弯速率,采用了一种更恰当的可变速率目标模型;对于IMMPF算法中的粒子多样性丧失问题,则将进化理论中的遗传算法引入到目标跟踪算法中,对采样进行优化,增加了采样粒子的多样性,使采样向后验分布取值较大的区域移动。仿真结果表明,提出的算法能更好的适应目标的机动运动,同时明显减少所需的采样数,取得了更好的跟踪性能。 For tracking the object with multiple mobile models,traditional interactive multiple model particle filter algorithm is usually adopted.However,the performance of this algorithm is not so satisfactory.Thus,a new IMMPF algorithm based on variable rate model and genetic algorithm is proposed.Aiming at the possible unknown turning rate in the use of IMMPF,a more proper variable rate object model is employed.And for the problem of particle diversity comedown occurred in IMMPF algorithm,the genetic algorithm in evolutionary theory is introduced into the object tracking algorithm,this could raise the diversity of sample particles and make samples move towards the regions with large value of posterior density distribution.Simulation results show that the proposed algorithm is more suitable for the objects with maneuvering motion and could remarkably reduce the sample,and thus achieve much better tracking performance.
出处 《通信技术》 2012年第8期104-108,共5页 Communications Technology
基金 国家自然科学基金资助项目(批准号:61071107) 四川省青年科技创新研究团队项目(No.2011JTD0007)
关键词 目标跟踪 交互式多模型 变速粒子滤波 遗传算法 object tracking IMM variable rate particle filter genetic algorithm
  • 相关文献

参考文献12

  • 1周弘仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991.
  • 2BLOM H A P, BAR-SHALOM Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficient[J]. IEEE Trans on Automatic Control, 1988, 33(08):780-7836.
  • 3CHENG Chang, RASHID A. Kernel Particle Filter for Visual Tracking[J]. IEEE Signal Processing Letters, 2005, 12(03):242-245.
  • 4付何伟,金明录,崔承毅.粒子滤波重采样及在盲均衡中的应用[J].通信技术,2010,43(7):25-27. 被引量:4
  • 5BOERS Y, DEIESSEN J N. Interacting Model Particle Filter[J]. IEEE Proc-Radar Sonar Navig., 2003, 150 (05) : 344-349.
  • 6郑光海,陈明燕,张伟.IMM概率数据关联算法的多重门限研究[J].通信技术,2010,43(7):228-229. 被引量:4
  • 7YANG Ning, DING Bin, ZHANG Jianming. Performance Test of Interacting Multiple Model Particle Filter for Maneuvering Target Location[C]. Shanghai: Measuring Technology and Mechatronics Automation, 2011: 850-853.
  • 8章飞,周杏鹏,陈小惠.基于粒子滤波的交互式多模型多机动目标跟踪[J].数据采集于处理,2011,26(02):181-187.
  • 9PARK S, HWANG J, ROU K, et al. A New Particle Filter Inspired by Biological Evolution: Genetic Filter[J]. International Journal of Advanced Robotic Systems (S1729-8806),2007, I(03):183-190.
  • 10QIU B S, LIU H Y, CAI Y O, et al. An Adaptive Parameter Model for Maneuvering Target Tracking[C]// The 4th International Conference on Signal Processing, ICSP' 98. Beijing: IEEE, 1998:564-469.

二级参考文献19

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部