期刊文献+

无镁诱导培养大鼠海马神经元与SH-SY5Y细胞自发性放电的变化 被引量:4

The Spontaneous Discharge of Cultured Rat Hippocampal Neurons and SH-SY5Y Cells Induced by Mg^(2+)-free Extracellular Fluid
下载PDF
导出
摘要 目的利用无镁细胞外液诱导原代培养大鼠海马神经元和SH-SY5Y细胞建立癫痫放电模型。方法采用新生24 h内Wistar大鼠,分离海马神经元进行原代培养。无镁细胞外液处理体外培养至10 d的神经元和传代培养的SH-SY5Y细胞3 h后恢复正常细胞外液,应用全细胞膜片钳技术记录2种细胞的放电情况。结果无镁处理后的神经元存在自发性的"癫痫样"放电;SH-SY5Y细胞未出现"癫痫样"放电。结论细胞间通过突触联系形成网状结构可能是诱导"癫痫样"放电的必要条件之一。 Objective To detect the spontaneous discharge of cultured rat hippocampal neurons and SH-SYSY cells in Mg2+-free extracellu- lar fluid. Methods The postnatal hippocampal tissues were taken from 1-day-old Wistar rats and were used for primary culture. Neurons after 10-day culture and SI-I-SY5Y cells were treated with Mg2+-free exta'acellular fluid for 3 h, then the discharge activity was recorded by patch clamp technique. Results Neurons showed spontaneous "epileptiform discharge" after the Mg2+-free extraceUular fluid treatment; on the contrary,SH-SY5Y cells did not show spontaneous "epileptiform discharge". Conclusion Synaptic connections between cells through the formation of network stnacture mac be necessary for inducing "epileptiform discharge".
出处 《中国医科大学学报》 CAS CSCD 北大核心 2012年第7期577-579,共3页 Journal of China Medical University
基金 国家自然科学基金资助项目(81001429 31071004) 辽宁省教育厅高校科研计划(L2010573)
关键词 海马 膜片钳 癫痫 hippocampus patch clamp epilepsy
  • 相关文献

参考文献6

  • 1吕粟,唐鹤菡,陈芹,欧阳络,陈华富,周东,邹翎,黄晓琦,张体江,李东明,龚启勇.弥散张量成像揭示部分及全面发作癫痫患者的丘脑改变[J].首都医科大学学报,2007,28(6):713-716. 被引量:4
  • 2周烨,石嵘,鲍勇,李长征,谢炜,郑文岭,马文丽.颞叶癫痫相关基因的生物信息学分析[J].南方医科大学学报,2011,31(1):180-183. 被引量:4
  • 3郭凤,孙威,姚阳,高青华,闵冬雨,封瑞,胡慧媛,蔡际群,郝丽英.无镁诱导培养大鼠海马神经元癫痫放电模型中延迟整流钾电流的变化[J].中国医科大学学报,2011,40(3):193-195. 被引量:4
  • 4Blair RE,Deshpande LS,Sombati S,et al. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy [ J ]. Neuropharmacology, 2009,57 (3) : 208-218.
  • 5Sombati S,Delorenzo RJ. Recurrent spontaneous seizure activity in hi ppocampal neuronal networks in culture [ J ]. J Neurophysiol, 1995, 73(4) : 1706-1711.
  • 6Blair RE, Sombati S, Churn SB,et al. Epileptogenesis causes an N- methyl-d-aspartate receptor/Ca^2+-dependent decrease in Ca^2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges [J ]. Eur J Pharmacol, 2008,588( 1 ) : 64-71.

二级参考文献33

  • 1周永,刘民,梁万年.癫痫流行病学研究进展[J].中华流行病学杂志,2007,28(1):92-94. 被引量:43
  • 2Wang WZ, Wu JZ, Wang DS, et al. The prevalence and treatment gap in epilepsy in China: an ILAE/IBE/WHO study [J]. Neurology, 2003, 60(9): 1544-5.
  • 3Birbeck GL. Epilepsy care in developing countries: part I of II[J]. Epilepsy Curr, 2010, 10(4): 75-9.
  • 4Heinzen EL, Yoon W, Weale ME, et al. Alternative ion channel splicing in mesial temporal lobe epilepsy and Alzheimer's disease [J]. Genome Biol, 2007, 8(3): R32.
  • 5Gribkoff VK. The therapeutic potential of neuronal KCNQ channel modulators[J]. Expert Opin Ther Targets, 2003, 7(6): 737-48.
  • 6Brown DA, Passmore GM. Neural KCNQ (Kv7) channels[J]. Br J Pharmacol, 2009, 156(8): 1185-95.
  • 7Scheffer IE, Berkovic SF. The genetics of human epilepsy [J]. Trends Pharmacol Sci, 2003, 24(8): 428-33.
  • 8George AL Jr. Inherited disorders of voltage-gated sodium channels [J]. J Clin Invest, 2005, 115(8): 1990-9.
  • 9Rosati B, Mckinnon D. Structural and regulatory evolution of cellular electrophysiological systems [J]. Evol Dev, 2009, 11(5): 610-8.
  • 10Remy S, Beck H. Molecular and cellularmechanisms of pharmacoresistance in epilepsy[J]. Brain, 2006, 129(1): 18-35.

共引文献9

同被引文献32

  • 1Blair RE, Sombati S, Churn SB, et al. Epileptogenesis causes an N- methyl-d-aspartate receptor/Ca^2+-dependent decrease in Ca^2+/calmodulin-dependent protein kinase Ⅱ activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges[J]. Eur J Pharmacol, 2008, 588(1): 64-71.
  • 2Dick IE, Tadross MR, Liang H, et al. A modular switch for spatial Ca^2+ selectivity in the calmodulin regulation of Cav channels[J]. Nature, 2008, 451(7180): 830-834.
  • 3Choi JS, Hudmon A, Waxman SG, et al. Calmodulin regulates current density and frequency-dependent inhibition of sodium channel Na.1.8 in DRG neurons[J]. J Neurophysiol, 2006, 96(1): 97-108.
  • 4Herzog RI, Liu C, Waxman SG, et al. Calmodulin binds to the C terminus of sodium channels Na, 1.4 and Na.1.6 and differentially modulates their functional propeaies[J]. J Neurosci, 2003, 23(23): 8261-8270.
  • 5Sombati S, Delorenzo RJ. Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture[J]. J Neurophysiol, 1995, 73(4): 1706-1711.
  • 6Blair RE, Deshpande LS, Sorrtbati S, et al. Prolonged exposure to WIN55, 212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy[J]. Neuropharmacol, 2009, 57(3): 208-218.
  • 7Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders[J]. J Clin Invest, 2005, 115(8): 2010-2017.
  • 8Guo F, Yu N, Cai JQ, et al. Voltage-gated sodium channel Na.1.1, Nav1.3 and beta(1) subunit were up-regulated in the hippocampus of spontaneously epileptic rat[J]. Brain Res Bull, 2008, 75(1): 179-157.
  • 9Rusconi R, Combi R, Cestele S, et al. A rescuable folding defective Na.1.1 (SCN1A) sodium channel mutant causes GEFS+: common mechanism in Na.1.1 related epilepsies[J]. Hum Mutat, 2009, 30(7): e747-760.
  • 10Volkers L, Kahlig KM, Verbeek NE, et al. Nay1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome[J]. Eur J Neurosci, 2011 34(8): 1268-1275.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部