期刊文献+

Recent Progress in Studies of Climate Change in China 被引量:28

Recent Progress in Studies of Climate Change in China
下载PDF
导出
摘要 An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1. This warming is more evident in northern China and is more significant in winter and spring. In the past 50 years in China, at least 27% of the average annual warming has been caused by urbanization. Overall, no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country, while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends. The frequency of tropical cyclone landfall decreased slightly, but the frequency of sand/dust storms decreased significantly. Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China, but it may not have exceeded the highest level of the Medieval Warm Period (1000 1300 AD). Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods, with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years. The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide. The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years, which might have been caused by increased aerosol concentrations and cloud cover. However, natural climate variability might have been a main driver for the mean and extreme precipitation variations observed over the past century. Climate models generally perform well in simulating the variations of annual mean SAT in China. They have also been used to project future changes in SAT under varied GHG emission scenarios. Large uncertainties have remained in these model-based projections, however, especially for the projected trends of regional precipitation and extreme climate events. An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1. This warming is more evident in northern China and is more significant in winter and spring. In the past 50 years in China, at least 27% of the average annual warming has been caused by urbanization. Overall, no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country, while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends. The frequency of tropical cyclone landfall decreased slightly, but the frequency of sand/dust storms decreased significantly. Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China, but it may not have exceeded the highest level of the Medieval Warm Period (1000 1300 AD). Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods, with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years. The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide. The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years, which might have been caused by increased aerosol concentrations and cloud cover. However, natural climate variability might have been a main driver for the mean and extreme precipitation variations observed over the past century. Climate models generally perform well in simulating the variations of annual mean SAT in China. They have also been used to project future changes in SAT under varied GHG emission scenarios. Large uncertainties have remained in these model-based projections, however, especially for the projected trends of regional precipitation and extreme climate events.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第5期958-977,共20页 大气科学进展(英文版)
基金 supported by the Ministry of Science and Technology of China (Grant Nos. 2007BAC29B02, 2007BAC03A01 and GYHY201206012)
关键词 overview temperature precipitation extreme climate climate change instrumental records proxy data detection ATTRIBUTION PROJECTION climate model China overview, temperature, precipitation, extreme climate, climate change, instrumental records proxy data, detection, attribution, projection, climate model, China
  • 相关文献

参考文献26

二级参考文献331

共引文献3122

同被引文献414

引证文献28

二级引证文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部