期刊文献+

靶向临床试验效应估计的偏倚及校正 被引量:1

Bias of treatment effects and its correction in targeted clinical trials
下载PDF
导出
摘要 随着人类基因组计划的完成,检测出与疾病相关的分子标靶成为可能,针对有特定疾病标靶的靶向药物开发日渐增多,靶向临床试验呈快速增长趋势。然而,以标靶检测阳性作为入组标准的靶向临床试验,由于疾病标靶诊断技术的不完善,致使入组病人中存在假阳性的现象,因而导致了靶向临床试验效应估计的偏倚。本文在分析疾病标靶的诊断性能对效应估计影响的基础上,指出常规分析方法估计效应存在的偏倚,并介绍一种基于EM算法联合参数Bootstrap抽样,实现靶向临床试验效应无偏估计的统计方法,为正确评价靶向临床试验提供了方法学支持。 With the completion of the Human Genome Project, we are able to identify the disease-related targets and apply them to disease treatment by developing targeted drugs. Hence, targeted clinical trials are becoming increasingly popular in recent years. However, due to the imperfect diagnostic techniques the patients enrolled in targeted clinical trials with positive result might not all truly have the targets. To include patients with false positive results would result in the bias of treatment effects. This paper analyses the influence of the accuracy of diagnostic method in targeted clinical trials and figures out the bias of treatment effects. Then a new statistical method which incorporated EM algorithm and parametric bootstrap would be introduced to give an unbiased estimation of the effect size. The method provides an adequate methodological support for the targeted clinical trials.
出处 《中国临床药理学与治疗学》 CAS CSCD 2012年第8期892-895,共4页 Chinese Journal of Clinical Pharmacology and Therapeutics
关键词 靶向临床试验 偏倚 EM算法 参数Bootstrap抽样 Targeted clinical trial Bias EM algorithm Parametric bootstrap
  • 相关文献

参考文献11

  • 1US FDA. The draft concept paper on drug-diagnos- tic co-development[S]. The US Food and Drug Ad- ministration Rockville, MD, 2005.
  • 2Liu JP, Lin JR. Statistical methods for targeted clinical trials under enrichment design[S]. J Formos Med Assoc, 2008, 107(12):$35-$42.
  • 3Liu JP, Lin JR. Inference on treatment effects for targeted clinical trials under enrichment design[J]. Pharm Star, 2009, 8(4):356-370.
  • 4Gerlach H, Toussaint S. Sensitive, specific, pre- dictive:, statistical basics: How to use biomarkers [J].Crit CareClin, 2011, 27(2) :215-227.
  • 5Liu JP. Targeted clinical trials. In: Chow SC, Cos- matos JT, et al. Translational Medicine: Strategies and Statistics Methods[M]. New York: Taylor gaFrancis, 2008:87-111.
  • 6Liu JP, Chow SC. Issues on the diagnostic multiva- riate index assay and targeted clinical trials [J].J Biopharm Stat,2008, 18(1) :167-182.
  • 7Ray P, Le Manach Y, Riou B. Statistical Evalua- tion of a Biomarker [J]. Anesthesiology, 2010, 112 (4) : 1023- 1040.
  • 8Dempster AP, Laird NM, Rubin DB. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion) [J]. J R Stat Soc Series B Stat Methodol,1977, 39(1) :1-38.
  • 9McLachlan GJ, Krishnan T. The EM algorithm and extensions[M]. Wiley: New York, 1997:40-80.
  • 10Efron B. Bootstrap: Another look at Jackknife[J]. Ann Statist, 1979, 7(1):1-26.

同被引文献8

  • 1Hoering A,Leblanc M,Crowley JJ. Randomizedphase IH clinical trial designs for targeted agents[J].Clin Cancer Res,2008,14(14) :4358-4367.
  • 2Wu W,Shi Q,Sargent DJ. Statistical considera-tions for the next generation of clinical trials [J].Semin Oncol.2011,38(4) :598-604.
  • 3Freidlin B,McShane LM,Korn EL. Randomizedclinical trials with biomarkers:design issues[J].JNatl Cancer Inst,2010,102(3) :152-160.
  • 4Sargent D,Allegra C. Issues in clinical trial designfor tumor marker studies[J].Semin Oncol>2002,29(3):222-230.
  • 5Fox E,Curt GA,Bails FM. Clinical trial design fortarget-based therapy [J].Oncologist,2002,7(5):401-409.
  • 6Maitournam A,Simon R. On the efficiency of tar-geted clinical trials[J],Statist Med,2005,24(3):329-339.
  • 7Hayes DF,Trock B,Harris AL. Assessing theclinical impact of prognostic factors :when is statis-tically significant clinically useful[J].Breast CancerRes Treat,1998,52(1/2/3):305-319.
  • 8戚川,周彩存.靶向治疗药物的Ⅲ期临床试验设计[J].中国医药导刊,2010,12(8):1356-1357. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部