期刊文献+

采用遗传相关向量机的工业机器人焊缝跟踪预测 被引量:2

Weld tracking prediction of industrial robot based on G-RVM
下载PDF
导出
摘要 为了克服传统焊缝跟踪方法精度低的问题,提出基于遗传相关向量机(G-RVM)的工业机器人焊缝跟踪预测方法,其中应用遗传算法对相关向量机参数进行优化。相关向量机通过构建回归函数以解决焊缝跟踪问题。为验证所设计控制器的有效性,进行了焊缝的跟踪实验,并设计了实验条件。实验结果表明,基于遗传相关向量机的焊缝跟踪误差小于支持向量机法所得数据。可见采用遗传相关向量机的控制更能够适应实际焊接过程的变化。 In order to solve the problem of low forecasting accuracy of traditional weld tracking methods, G-RVM is applied to weld tracking in. Firstly, the principle of weld tracking based on G-RVM is presented, where the parameters of relevance vector regression model is obtained by Genetic Algorithm ( GA ) and training data. In order to testify the effectiveness of the proposed controller, the experiment on weld tracking is performed, and the experimental conditions are designed. The experimental results show that the prediction error of G-RVM is lower than that of support vector machine. Thus, weld tracking based on G-RVM is more suitable for the change of welding process.
出处 《现代制造工程》 CSCD 北大核心 2012年第8期46-48,共3页 Modern Manufacturing Engineering
关键词 焊缝跟踪 控制结构 相关向量机 工业机器人 遗传算法 weld tracking control structure RVM industrial robot Genetic Algorithm (GA)
  • 相关文献

参考文献7

  • 1Tang B T,Zhao Z, Yu S, et al. One-step FEM based control of weld line movement for tailor-welded blanks forming[ J ]. ~ournal of Materials Processing Technology, 2007 (187 - 188) : 383 -386.
  • 2Gao Yanfeng, Zhang Hua, Ye Yanhui. Back-stepping and Neu- ral Network Control of a Mobile Robot for Curved Weld Seam Tracking[J]. Procedia Engineering,2011 (15) : 38 -44.
  • 3Cemil Oz, Ming C Leu. American Sign Language word recog- nition with a sensory glove using artificial neural networks [ J ]. Engineering Applications of Artificial Intelligence, 2011,24(7) : 1204 - 1213.
  • 4Julien Eynard, St6phane Grieu, Monique Polit. Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption[ J]. Engineering Applications of Artificial Intelligence, 2011,24 (3) : 501 -516.
  • 5Yeh Chiyuan, Huang Chiwei, Lee Shiejue. A muhiple-kernel support vector regression approach for stock market price forecasting[ J ]. Expert Systems with Applications, 2011,38 (3) : 2177 -2186.
  • 6Shin Jongho, Jin Kim H, Sewook Park, et al. Model predictive flight control using adaptive support vector regression [ J ]. Neurocomputing,2010,73 (4 - 6) : 1031 - 1037.
  • 7Yuan Jin, Wang Kesheng, Yu Tao, et al. Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process [ J ]. Engineering Applications of Ar- tificial Intelligence,2007,20 (7) : 970 - 979.

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部