期刊文献+

C_(72)衍生物C_(72)X_4(X=H,F,Cl)的理论研究

Theoretical study on fullerene C_(72)'s derivatives C_(72)X_4(X=H,F,Cl)
下载PDF
导出
摘要 在混合密度泛函B3LYP理论下,用6-31G*基函数对富勒烯C72及其衍生物C72X4(X=H,F,Cl)进行了几何构型优化。计算了分子静电势、前线轨道能级差、反应能、核独立化学位移(NICS)和振动频率。计算结果表明,C72(#11188)球外负静电势出现在一对相邻五边形公共顶点以及两个六边形-五边形-六边形公共顶点区域,这些点即为化学反应中最可能的活性点;C72X4均是势能面上的稳定驻点;C72X4的能隙比C72大,这些加成反应都是放热的,并且具有很强的芳香性。因此它们都有可能合成出来。 Stimulated by recent preparation and characterization of the first C72 C14 fullerene derivative with one fused pentagons, the C72 fullerene and its exohedral derivatives C72X4( X = H, F, C1 )have been reported here. The molecular electrostatic potential, HO- MO-LUMO gap energies ,reaction energies, nucleus independent chemical shifts(NICS) and harmonic frequencies have been studied with the density functional theory method at the B3LYP/6-31 G* level. The calculated results indicate that the negative potential on C72 (#11188 )outside the sphere is localized in the neighbourhood of the abutting pentagon sites and both the hexagon-pentagon-hexagon vertex fusions. They constitute the most probable active sites in chemical reactions. Three structures are the stationary points on the potential energy surface of C72 X4 molecules, aod the LUMO-HOMO gap energies of C72 X4 are higher than C72 (#11188) and all of these addition reactions are exothetmic. They were highly aronratic. Therefore,it is quite possible to be synthesized experimentally.
出处 《化学研究与应用》 CAS CSCD 北大核心 2012年第8期1202-1206,共5页 Chemical Research and Application
基金 辽宁省教育厅高等学校科学研究资助项目(2009A784)
关键词 密度泛函理论 C72 C72X4 电子结构 稳定性 density functional theory C= Cv2X4 electronic structure stability
  • 相关文献

参考文献16

  • 1Kobayashi K,Nagase S,Yoshida M ,et al. Endohedral met- allofullerenes. Are the isolated Pentagon rule and fullerene struetures always satisfied [ J ]. J Am Chem Soc , 1997,119 (51) : 12693-12694.
  • 2Slanina Z, Ishimura K, Kobayashi K, et al. C72 isomers : the IPR-satisfying cage is disfavored by both energy and entro- py[J]. Chem Phys Lett,2004,384(1-3) :114-118.
  • 3Kato H,Taninaka A,Sugai T,et al. Structure of a Missing- Caged Metallofullerene: La^2 C^726 [ J ]. J Am Chem Soc, 2003,125(26) :7782-7783.
  • 4Wakahara T,Nikawa H,Kikuchi T,et al. La@ G^72 Having a Non-IPR Carbon Cage[J]. J Am Chem Soc,2006,128 (44) : 14228-14229.
  • 5Lu X,Nikawa H,Nakahodo T,et al. Chemical Understand- ing of a Non-IPR Metallofullerene:Stabilization of Encaged Metals on Fused-Pentagon Bonds in La^ @ C^72 [ J ]. J Am Chem Soc ,2008,130(28 ) :9129-9136.
  • 6Lu X, Nikawa H, Tsuchiya T, et al. Bis-Carbene Adducts of Non-IPR La^2 @ C^72 : Localization of High Reactivity a- round Fused Pentagons and Electrochemical Properties [ J]. Angew Chem lnt Ed,2008,47(45) :8642-8645.
  • 7Xie S Y Gao F, Lu X, et al. Capturing the labile fullerene [ 50 ] as C^50 Cl^10 [ J ]. Sc/ence, 2004,304 ( 5671 ) :699-699.
  • 8Troshin P A, Avent A G, Darwish A D, et al. Isolation of two seven-membered ring C^58fullerene derivatives:C^58 F^17 CF^3 and C^58F^186 [J]. Sc/ence,2005,309(5732) :278-281.
  • 9Wang C R, Shi Z Q, Wan L J, et al. C^64 H^4 : Production, i-solation, and structural characterizations of a stable uncon- ventional fulleride [ J ]. J Am Chem Soc, 2006,128 (20) : 6605-6610.
  • 10Han X, Zhou S J, Tan Y Z, et al. Crystal Structures of Saturn-Like C50 Clio and Pineapple-Shaped C^64C^14:Geo- metric Implications of Double-and Triple-Pentagon-Fused Chlorofullerenes [ J ]. Angew Chem lnt Ed, 2008, 47 (29) :5340-5343.

二级参考文献16

  • 1唐春梅,袁勇波,邓开明,杨金龙.C_(72),La_2@C_(72)几何结构和电子性质的计算研究[J].物理学报,2006,55(7):3601-3605. 被引量:11
  • 2WANG Dong-Lai,SUN Xiao-Ping,ZHAI Yu-Chun.DFT Studies on Non-IPR C_(68) and Endohedral Fullerene Sc_3N@C_(68)[J].Chinese Journal of Structural Chemistry,2007,26(3):321-327. 被引量:3
  • 3Hennrieh F H, Michel R H, Fischer A, et al. Isolation and characterization of C80 [ J ]. angewandte Chemie: International Edition, 1996,35 (15) : 1732 - 1734.
  • 4Wang C R, Sugai T, Kai T, et al. Production and isolation of an ellipsoidal C80 fullerene [ J ]. Chemical Communications, 2000(7) :557 - 558.
  • 5Bethune D S, Johnson R D, Salem J R, et al. Atoms in carbon cages: the structure and properties of endohedral fullerenes[J]. Nature, 1999,366(6451) :123- 128.
  • 6Stevenson S, Rice G, Glass T, et al. Small-bandgap endohedral metallofullerenes in high yield and purity [ J ]. Nature, 1999,401(6748):55-57.
  • 7Zuo T, Beavers C M, Duchamp J C, et al. Isolation and structural characterization of a family of endohedral fulIerenes including the large, chiral cage fullerenes Tb3N @ Cs8 and TbsN@C86 as well as the Ih and Dsh isomers of Tb3N@C80 [J]. Journal of the American Chemical Society, 2007,129 (7) :2035 - 2043.
  • 8Simeonov K S, Amsharov K Y, Jansen M. C80 Cl12: a chlorine derivative of the chiral D2-C80 isomer-empirical rationale of halogen-atom addition pattem[J ]. Chemistry : A European Journal, 2009,15(8) : 1812 - 1815.
  • 9Hitehcock P B, Taylor R. Single crystal X-ray structure of tetrahedral C60F36: the most aromatic and distorted fullerene [J]. Chemical Communications, 2002(18) :2078 - 2079.
  • 10Hitchcock P B, Avent A G, Martsinovich N, et al. C1C70F38 contains four planar aromatic hexagons; the parallel between fluorination of [ 60 ]- and [ 70 ] fullerenes [ J ]. Organic Letters, 2005,7 (10) : 1975 - 1978.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部