期刊文献+

四能级量子制冷循环 被引量:3

A four-level quantum refrigeration cycle
原文传递
导出
摘要 本文提出以两个qubit量子纠缠系统为工质的四能级制冷循环模型,基于量子热力学第一定律和热纠缠概念,分析了在循环中系统与外界交换的热量、输入功、制冷系数等热力学参数与量子纠缠之间的关系,结果表明:制冷系数等高线图是环状曲线,随纠缠比r增加而非单调变化;当相互作用常数J比较小时,量子制冷机运行区间在c_1>c_2,当增加J值时,制冷机运行区间在c_1>c_2和c_1<c_2两个区域;最大制冷系数ε_(max)随J值增大而增加. A four-level entangled quantum refrigeration cycle working with a two-qubit entangled system is proposed in this paper.Based on the first law of quantum thermodynamics and the concept of thermal entanglement,the relation between the quantum entanglement and the several thermodynamic quantities such as the heat transfer,the input work and the coefficient of performance is analyzed.It is found that the isoline of the coefficient of performance is the loop line and it no longer monotonically changes with the ratio of entanglement;in a small exchange constant J the operation region of the refrigerator is c1 〉 c2 and in a larger exchange constant J the operation region of the refrigerator may be c1 〉 c2 or c1 〈c2;the maximal coefficient of performance increases as the exchange constant increases.
机构地区 南昌大学物理系
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第15期23-30,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11065008和11174118)资助的课题~~
关键词 量子纠缠 制冷循环 不可逆热力学 quantum entanglement; quantum refrigeration cycle; irreversible thermodynamics
  • 相关文献

参考文献27

  • 1Sisman A, Saygin H 2001 Appl. Energ. 68 367.
  • 2Saygin H, Sisman A 2001 J. Appl. Phys. 90 3086.
  • 3He J Z, Chen J C, Hua B 2002 Phys. Rev. E 65 036145.
  • 4Wu F, Chen L G, Sun F R, Wu C H, Li Q 2006 Phys. Rev. E 73 016103.
  • 5He J Z, Xin Y, He X 2007 Appl. Energ. 84 176.
  • 6Wu F, Chen L, Wu S, Sun F 2006 J. Phys. D: Appl. Phys. 39 4731.
  • 7Lin B H, Chen J C 2003 Phys. Rev. E 67 046105.
  • 8He J Z, He X, Tang W 2009 Sci. Chin. Ser. G 52 1317.
  • 9Wang J H, He J Z, Mao Z Y 2007 Sci. Chin. Ser. G 50 163.
  • 10Rezek Y, Kosloff R 2006 New J. Phys. 8 83.

二级参考文献3

共引文献15

同被引文献3

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部