摘要
讨论热传导方程初边值问题的一种广义差分方法,取试探函数空间为二次Lagrange三角形元,检验函数空间为分片常数,得到了半离散和全离散两种情形的最佳收敛阶。
We discuss a generalized difference method for the equations of heatconduction.The trial space is the iecewise quadratic polynomials and the testspace is the piecewise constants.Optimal rates of convergence for continuous time and discrete time are established.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
1990年第1期6-13,共8页
Acta Scientiarum Naturalium Universitatis Sunyatseni
关键词
热传导方程
广义差分法
试探函数
generalized difference method
trial space
test space
optimal convergence rate